MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetss Unicode version

Theorem cmetss 19138
Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cmetss.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
cmetss  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )

Proof of Theorem cmetss
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 19110 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2 metxmet 18273 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
31, 2syl 16 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( * Met `  X
) )
43adantr 452 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  D  e.  ( * Met `  X
) )
5 cmetss.2 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
65mopntopon 18359 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
74, 6syl 16 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  (TopOn `  X )
)
8 resss 5110 . . . . . . . 8  |-  ( D  |`  ( Y  X.  Y
) )  C_  D
9 dmss 5009 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  C_  D  ->  dom  ( D  |`  ( Y  X.  Y
) )  C_  dom  D )
10 dmss 5009 . . . . . . . 8  |-  ( dom  ( D  |`  ( Y  X.  Y ) ) 
C_  dom  D  ->  dom 
dom  ( D  |`  ( Y  X.  Y
) )  C_  dom  dom 
D )
118, 9, 10mp2b 10 . . . . . . 7  |-  dom  dom  ( D  |`  ( Y  X.  Y ) ) 
C_  dom  dom  D
12 cmetmet 19110 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y ) )
13 metdmdm 18275 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  Y  =  dom  dom  ( D  |`  ( Y  X.  Y
) ) )
1412, 13syl 16 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  Y  =  dom  dom  ( D  |`  ( Y  X.  Y
) ) )
15 metdmdm 18275 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  X  =  dom  dom  D )
161, 15syl 16 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  X  =  dom  dom  D )
17 sseq12 3314 . . . . . . . 8  |-  ( ( Y  =  dom  dom  ( D  |`  ( Y  X.  Y ) )  /\  X  =  dom  dom 
D )  ->  ( Y  C_  X  <->  dom  dom  ( D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1814, 16, 17syl2anr 465 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  C_  X  <->  dom  dom  ( D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1911, 18mpbiri 225 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_  X )
20 flimcls 17938 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
217, 19, 20syl2anc 643 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
22 simprrr 742 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  ( J  fLim  f ) )
234adantr 452 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  D  e.  ( * Met `  X
) )
245methaus 18440 . . . . . . . . 9  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Haus )
25 hausflimi 17933 . . . . . . . . 9  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  f ) )
2623, 24, 253syl 19 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E* x  x  e.  ( J  fLim  f ) )
2723, 6syl 16 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  J  e.  (TopOn `  X ) )
28 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  ( Fil `  X ) )
29 simprrl 741 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  e.  f )
30 flimrest 17936 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  Y  e.  f )  ->  (
( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3127, 28, 29, 30syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3219adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  C_  X
)
33 eqid 2387 . . . . . . . . . . . . . 14  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
34 eqid 2387 . . . . . . . . . . . . . 14  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
3533, 5, 34metrest 18444 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3623, 32, 35syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3736oveq1d 6035 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( ft  Y ) ) )
3831, 37eqtr3d 2421 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) ) )
39 simplr 732 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( D  |`  ( Y  X.  Y
) )  e.  (
CMet `  Y )
)
405flimcfil 19137 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  ( J  fLim  f )
)  ->  f  e.  (CauFil `  D ) )
4123, 22, 40syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  (CauFil `  D ) )
42 cfilres 19120 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  f  e.  ( Fil `  X )  /\  Y  e.  f )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4323, 28, 29, 42syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4441, 43mpbid 202 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
4534cmetcvg 19109 . . . . . . . . . . 11  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  /\  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4639, 44, 45syl2anc 643 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4738, 46eqnetrd 2568 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =/=  (/) )
48 n0 3580 . . . . . . . . . 10  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x  x  e.  ( ( J  fLim  f )  i^i  Y ) )
49 elin 3473 . . . . . . . . . . 11  |-  ( x  e.  ( ( J 
fLim  f )  i^i 
Y )  <->  ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5049exbii 1589 . . . . . . . . . 10  |-  ( E. x  x  e.  ( ( J  fLim  f
)  i^i  Y )  <->  E. x ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5148, 50bitri 241 . . . . . . . . 9  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x ( x  e.  ( J  fLim  f )  /\  x  e.  Y ) )
5247, 51sylib 189 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )
53 mopick 2300 . . . . . . . 8  |-  ( ( E* x  x  e.  ( J  fLim  f
)  /\  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )  ->  (
x  e.  ( J 
fLim  f )  ->  x  e.  Y )
)
5426, 52, 53syl2anc 643 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( x  e.  ( J  fLim  f
)  ->  x  e.  Y ) )
5522, 54mpd 15 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  Y )
5655rexlimdvaa 2774 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( E. f  e.  ( Fil `  X ) ( Y  e.  f  /\  x  e.  ( J  fLim  f ) )  ->  x  e.  Y )
)
5721, 56sylbid 207 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  ->  x  e.  Y )
)
5857ssrdv 3297 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
( cls `  J
) `  Y )  C_  Y )
595mopntop 18360 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
604, 59syl 16 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  Top )
615mopnuni 18361 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
624, 61syl 16 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  X  =  U. J )
6319, 62sseqtrd 3327 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_ 
U. J )
64 eqid 2387 . . . . 5  |-  U. J  =  U. J
6564iscld4 17052 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  U. J )  ->  ( Y  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  Y
)  C_  Y )
)
6660, 63, 65syl2anc 643 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  e.  ( Clsd `  J )  <->  ( ( cls `  J ) `  Y )  C_  Y
) )
6758, 66mpbird 224 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  e.  ( Clsd `  J
) )
681adantr 452 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( Met `  X
) )
6964cldss 17016 . . . . . 6  |-  ( Y  e.  ( Clsd `  J
)  ->  Y  C_  U. J
)
7069adantl 453 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_ 
U. J )
7168, 2, 613syl 19 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  X  =  U. J )
7270, 71sseqtr4d 3328 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_  X )
73 metres2 18301 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
7468, 72, 73syl2anc 643 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
753ad2antrr 707 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( * Met `  X
) )
7672adantr 452 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  C_  X )
7775, 76, 35syl2anc 643 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( Jt  Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
7877eqcomd 2392 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  =  ( Jt  Y ) )
79 metxmet 18273 . . . . . . . . . . 11  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( * Met `  Y
) )
8074, 79syl 16 . . . . . . . . . 10  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y
) )
81 cfilfil 19091 . . . . . . . . . 10  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  f  e.  ( Fil `  Y ) )
8280, 81sylan 458 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( Fil `  Y
) )
83 elfvdm 5697 . . . . . . . . . 10  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
8483ad2antrr 707 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  X  e.  dom  CMet )
85 trfg 17844 . . . . . . . . 9  |-  ( ( f  e.  ( Fil `  Y )  /\  Y  C_  X  /\  X  e. 
dom  CMet )  ->  (
( X filGen f )t  Y )  =  f )
8682, 76, 84, 85syl3anc 1184 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( X filGen f )t  Y )  =  f )
8786eqcomd 2392 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  =  ( ( X
filGen f )t  Y ) )
8878, 87oveq12d 6038 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( ( Jt  Y )  fLim  (
( X filGen f )t  Y ) ) )
8975, 6syl 16 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  J  e.  (TopOn `  X )
)
90 filfbas 17801 . . . . . . . . . 10  |-  ( f  e.  ( Fil `  Y
)  ->  f  e.  ( fBas `  Y )
)
9182, 90syl 16 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  Y
) )
92 filsspw 17804 . . . . . . . . . . 11  |-  ( f  e.  ( Fil `  Y
)  ->  f  C_  ~P Y )
9382, 92syl 16 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P Y )
94 sspwb 4354 . . . . . . . . . . 11  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
9576, 94sylib 189 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ~P Y  C_  ~P X )
9693, 95sstrd 3301 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P X )
97 fbasweak 17818 . . . . . . . . 9  |-  ( ( f  e.  ( fBas `  Y )  /\  f  C_ 
~P X  /\  X  e.  dom  CMet )  ->  f  e.  ( fBas `  X
) )
9891, 96, 84, 97syl3anc 1184 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  X
) )
99 fgcl 17831 . . . . . . . 8  |-  ( f  e.  ( fBas `  X
)  ->  ( X filGen f )  e.  ( Fil `  X ) )
10098, 99syl 16 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  ( Fil `  X
) )
101 ssfg 17825 . . . . . . . . 9  |-  ( f  e.  ( fBas `  X
)  ->  f  C_  ( X filGen f ) )
10298, 101syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_  ( X filGen f ) )
103 filtop 17808 . . . . . . . . 9  |-  ( f  e.  ( Fil `  Y
)  ->  Y  e.  f )
10482, 103syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  f )
105102, 104sseldd 3292 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  ( X filGen f ) )
106 flimrest 17936 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen f )  e.  ( Fil `  X
)  /\  Y  e.  ( X filGen f ) )  ->  ( ( Jt  Y )  fLim  ( ( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i 
Y ) )
10789, 100, 105, 106syl3anc 1184 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( Jt  Y )  fLim  (
( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i  Y ) )
108 flimclsi 17931 . . . . . . . . 9  |-  ( Y  e.  ( X filGen f )  ->  ( J  fLim  ( X filGen f ) )  C_  ( ( cls `  J ) `  Y ) )
109105, 108syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  (
( cls `  J
) `  Y )
)
110 cldcls 17029 . . . . . . . . 9  |-  ( Y  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  Y )  =  Y )
111110ad2antlr 708 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( cls `  J
) `  Y )  =  Y )
112109, 111sseqtrd 3327 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  Y
)
113 df-ss 3277 . . . . . . 7  |-  ( ( J  fLim  ( X filGen f ) )  C_  Y 
<->  ( ( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
114112, 113sylib 189 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
11588, 107, 1143eqtrd 2423 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( J 
fLim  ( X filGen f ) ) )
116 simpll 731 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( CMet `  X
) )
11768, 2syl 16 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( * Met `  X
) )
118 cfilresi 19119 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
119117, 118sylan 458 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
1205cmetcvg 19109 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( X filGen f )  e.  (CauFil `  D )
)  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
121116, 119, 120syl2anc 643 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
122115, 121eqnetrd 2568 . . . 4  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
123122ralrimiva 2732 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
12434iscmet 19108 . . 3  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  ( ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y )  /\  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) ) )
12574, 123, 124sylanbrc 646 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )
12667, 125impbida 806 1  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   E*wmo 2239    =/= wne 2550   A.wral 2649   E.wrex 2650    i^i cin 3262    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   U.cuni 3957    X. cxp 4816   dom cdm 4818    |` cres 4820   ` cfv 5394  (class class class)co 6020   ↾t crest 13575   * Metcxmt 16612   Metcme 16613   fBascfbas 16615   filGencfg 16616   MetOpencmopn 16617   Topctop 16881  TopOnctopon 16882   Clsdccld 17003   clsccl 17005   Hauscha 17294   Filcfil 17798    fLim cflim 17887  CauFilccfil 19076   CMetcms 19078
This theorem is referenced by:  recmet  19145  cmsss  19172  bnsscmcl  22218  rrnheibor  26237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ico 10854  df-icc 10855  df-rest 13577  df-topgen 13594  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-top 16886  df-bases 16888  df-topon 16889  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-haus 17301  df-fil 17799  df-flim 17892  df-cfil 19079  df-cmet 19081
  Copyright terms: Public domain W3C validator