MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetss Unicode version

Theorem cmetss 18736
Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cmetss.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
cmetss  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )

Proof of Theorem cmetss
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 18708 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2 metxmet 17895 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
31, 2syl 15 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( * Met `  X
) )
43adantr 451 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  D  e.  ( * Met `  X
) )
5 cmetss.2 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
65mopntopon 17981 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
74, 6syl 15 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  (TopOn `  X )
)
8 resss 4978 . . . . . . . 8  |-  ( D  |`  ( Y  X.  Y
) )  C_  D
9 dmss 4877 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  C_  D  ->  dom  (  D  |`  ( Y  X.  Y
) )  C_  dom  D )
10 dmss 4877 . . . . . . . 8  |-  (  dom  (  D  |`  ( Y  X.  Y ) ) 
C_  dom  D  ->  dom 
dom  (  D  |`  ( Y  X.  Y
) )  C_  dom  dom 
D )
118, 9, 10mp2b 9 . . . . . . 7  |-  dom  dom  (  D  |`  ( Y  X.  Y ) ) 
C_  dom  dom  D
12 cmetmet 18708 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y ) )
13 metdmdm 17897 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  Y  =  dom  dom  (  D  |`  ( Y  X.  Y
) ) )
1412, 13syl 15 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  Y  =  dom  dom  (  D  |`  ( Y  X.  Y
) ) )
15 metdmdm 17897 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  X  =  dom  dom  D )
161, 15syl 15 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  X  =  dom  dom  D )
17 sseq12 3202 . . . . . . . 8  |-  ( ( Y  =  dom  dom  (  D  |`  ( Y  X.  Y ) )  /\  X  =  dom  dom 
D )  ->  ( Y  C_  X  <->  dom  dom  (  D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1814, 16, 17syl2anr 464 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  C_  X  <->  dom  dom  (  D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1911, 18mpbiri 224 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_  X )
20 flimcls 17676 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
217, 19, 20syl2anc 642 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
22 simprrr 741 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  ( J  fLim  f ) )
234adantr 451 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  D  e.  ( * Met `  X
) )
245methaus 18062 . . . . . . . . . 10  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Haus )
25 hausflimi 17671 . . . . . . . . . 10  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  f ) )
2623, 24, 253syl 18 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E* x  x  e.  ( J  fLim  f ) )
2723, 6syl 15 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  J  e.  (TopOn `  X ) )
28 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  ( Fil `  X ) )
29 simprrl 740 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  e.  f )
30 flimrest 17674 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  Y  e.  f )  ->  (
( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3127, 28, 29, 30syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3219adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  C_  X
)
33 eqid 2284 . . . . . . . . . . . . . . 15  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
34 eqid 2284 . . . . . . . . . . . . . . 15  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
3533, 5, 34metrest 18066 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3623, 32, 35syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3736oveq1d 5835 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( ft  Y ) ) )
3831, 37eqtr3d 2318 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) ) )
39 simplr 731 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( D  |`  ( Y  X.  Y
) )  e.  (
CMet `  Y )
)
405flimcfil 18735 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  ( J  fLim  f )
)  ->  f  e.  (CauFil `  D ) )
4123, 22, 40syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  (CauFil `  D ) )
42 cfilres 18718 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  f  e.  ( Fil `  X )  /\  Y  e.  f )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4323, 28, 29, 42syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4441, 43mpbid 201 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
4534cmetcvg 18707 . . . . . . . . . . . 12  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  /\  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4639, 44, 45syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4738, 46eqnetrd 2465 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =/=  (/) )
48 n0 3465 . . . . . . . . . . 11  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x  x  e.  ( ( J  fLim  f )  i^i  Y ) )
49 elin 3359 . . . . . . . . . . . 12  |-  ( x  e.  ( ( J 
fLim  f )  i^i 
Y )  <->  ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5049exbii 1569 . . . . . . . . . . 11  |-  ( E. x  x  e.  ( ( J  fLim  f
)  i^i  Y )  <->  E. x ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5148, 50bitri 240 . . . . . . . . . 10  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x ( x  e.  ( J  fLim  f )  /\  x  e.  Y ) )
5247, 51sylib 188 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )
53 mopick 2206 . . . . . . . . 9  |-  ( ( E* x  x  e.  ( J  fLim  f
)  /\  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )  ->  (
x  e.  ( J 
fLim  f )  ->  x  e.  Y )
)
5426, 52, 53syl2anc 642 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( x  e.  ( J  fLim  f
)  ->  x  e.  Y ) )
5522, 54mpd 14 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  Y )
5655expr 598 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  f  e.  ( Fil `  X
) )  ->  (
( Y  e.  f  /\  x  e.  ( J  fLim  f )
)  ->  x  e.  Y ) )
5756rexlimdva 2668 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( E. f  e.  ( Fil `  X ) ( Y  e.  f  /\  x  e.  ( J  fLim  f ) )  ->  x  e.  Y )
)
5821, 57sylbid 206 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  ->  x  e.  Y )
)
5958ssrdv 3186 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
( cls `  J
) `  Y )  C_  Y )
605mopntop 17982 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
614, 60syl 15 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  Top )
625mopnuni 17983 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
634, 62syl 15 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  X  =  U. J )
6419, 63sseqtrd 3215 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_ 
U. J )
65 eqid 2284 . . . . 5  |-  U. J  =  U. J
6665iscld4 16798 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  U. J )  ->  ( Y  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  Y
)  C_  Y )
)
6761, 64, 66syl2anc 642 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  e.  ( Clsd `  J )  <->  ( ( cls `  J ) `  Y )  C_  Y
) )
6859, 67mpbird 223 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  e.  ( Clsd `  J
) )
691adantr 451 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( Met `  X
) )
7065cldss 16762 . . . . . 6  |-  ( Y  e.  ( Clsd `  J
)  ->  Y  C_  U. J
)
7170adantl 452 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_ 
U. J )
7269, 2, 623syl 18 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  X  =  U. J )
7371, 72sseqtr4d 3216 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_  X )
74 metres2 17923 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
7569, 73, 74syl2anc 642 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
763ad2antrr 706 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( * Met `  X
) )
7773adantr 451 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  C_  X )
7876, 77, 35syl2anc 642 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( Jt  Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
7978eqcomd 2289 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  =  ( Jt  Y ) )
80 metxmet 17895 . . . . . . . . . . 11  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( * Met `  Y
) )
8175, 80syl 15 . . . . . . . . . 10  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y
) )
82 cfilfil 18689 . . . . . . . . . 10  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  f  e.  ( Fil `  Y ) )
8381, 82sylan 457 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( Fil `  Y
) )
84 elfvdm 5516 . . . . . . . . . 10  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
8584ad2antrr 706 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  X  e.  dom  CMet )
86 trfg 17582 . . . . . . . . 9  |-  ( ( f  e.  ( Fil `  Y )  /\  Y  C_  X  /\  X  e. 
dom  CMet )  ->  (
( X filGen f )t  Y )  =  f )
8783, 77, 85, 86syl3anc 1182 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( X filGen f )t  Y )  =  f )
8887eqcomd 2289 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  =  ( ( X
filGen f )t  Y ) )
8979, 88oveq12d 5838 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( ( Jt  Y )  fLim  (
( X filGen f )t  Y ) ) )
9076, 6syl 15 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  J  e.  (TopOn `  X )
)
91 filfbas 17539 . . . . . . . . . 10  |-  ( f  e.  ( Fil `  Y
)  ->  f  e.  ( fBas `  Y )
)
9283, 91syl 15 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  Y
) )
93 filsspw 17542 . . . . . . . . . . 11  |-  ( f  e.  ( Fil `  Y
)  ->  f  C_  ~P Y )
9483, 93syl 15 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P Y )
95 sspwb 4222 . . . . . . . . . . 11  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
9677, 95sylib 188 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ~P Y  C_  ~P X )
9794, 96sstrd 3190 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P X )
98 fbasweak 17556 . . . . . . . . 9  |-  ( ( f  e.  ( fBas `  Y )  /\  f  C_ 
~P X  /\  X  e.  dom  CMet )  ->  f  e.  ( fBas `  X
) )
9992, 97, 85, 98syl3anc 1182 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  X
) )
100 fgcl 17569 . . . . . . . 8  |-  ( f  e.  ( fBas `  X
)  ->  ( X filGen f )  e.  ( Fil `  X ) )
10199, 100syl 15 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  ( Fil `  X
) )
102 ssfg 17563 . . . . . . . . 9  |-  ( f  e.  ( fBas `  X
)  ->  f  C_  ( X filGen f ) )
10399, 102syl 15 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_  ( X filGen f ) )
104 filtop 17546 . . . . . . . . 9  |-  ( f  e.  ( Fil `  Y
)  ->  Y  e.  f )
10583, 104syl 15 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  f )
106103, 105sseldd 3182 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  ( X filGen f ) )
107 flimrest 17674 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen f )  e.  ( Fil `  X
)  /\  Y  e.  ( X filGen f ) )  ->  ( ( Jt  Y )  fLim  ( ( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i 
Y ) )
10890, 101, 106, 107syl3anc 1182 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( Jt  Y )  fLim  (
( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i  Y ) )
109 flimclsi 17669 . . . . . . . . 9  |-  ( Y  e.  ( X filGen f )  ->  ( J  fLim  ( X filGen f ) )  C_  ( ( cls `  J ) `  Y ) )
110106, 109syl 15 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  (
( cls `  J
) `  Y )
)
111 cldcls 16775 . . . . . . . . 9  |-  ( Y  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  Y )  =  Y )
112111ad2antlr 707 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( cls `  J
) `  Y )  =  Y )
113110, 112sseqtrd 3215 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  Y
)
114 df-ss 3167 . . . . . . 7  |-  ( ( J  fLim  ( X filGen f ) )  C_  Y 
<->  ( ( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
115113, 114sylib 188 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
11689, 108, 1153eqtrd 2320 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( J 
fLim  ( X filGen f ) ) )
117 simpll 730 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( CMet `  X
) )
11869, 2syl 15 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( * Met `  X
) )
119 cfilresi 18717 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
120118, 119sylan 457 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
1215cmetcvg 18707 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( X filGen f )  e.  (CauFil `  D )
)  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
122117, 120, 121syl2anc 642 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
123116, 122eqnetrd 2465 . . . 4  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
124123ralrimiva 2627 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
12534iscmet 18706 . . 3  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  ( ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y )  /\  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) ) )
12675, 124, 125sylanbrc 645 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )
12768, 126impbida 805 1  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1685   E*wmo 2145    =/= wne 2447   A.wral 2544   E.wrex 2545    i^i cin 3152    C_ wss 3153   (/)c0 3456   ~Pcpw 3626   U.cuni 3828    X. cxp 4686    dom cdm 4688    |` cres 4690   ` cfv 5221  (class class class)co 5820   ↾t crest 13321   * Metcxmt 16365   Metcme 16366   MetOpencmopn 16368   Topctop 16627  TopOnctopon 16628   Clsdccld 16749   clsccl 16751   Hauscha 17032   fBascfbas 17514   filGencfg 17515   Filcfil 17536    fLim cflim 17625  CauFilccfil 18674   CMetcms 18676
This theorem is referenced by:  recmet  18741  cmsss  18768  bnsscmcl  21441  rrnheibor  25972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-n0 9962  df-z 10021  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ico 10658  df-icc 10659  df-rest 13323  df-topgen 13340  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-top 16632  df-bases 16634  df-topon 16635  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-haus 17039  df-fbas 17516  df-fg 17517  df-fil 17537  df-flim 17630  df-cfil 18677  df-cmet 18679
  Copyright terms: Public domain W3C validator