Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmt2N Unicode version

Theorem cmt2N 28570
Description: Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (cmcm2i 22115 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmt2.b  |-  B  =  ( Base `  K
)
cmt2.o  |-  ._|_  =  ( oc `  K )
cmt2.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmt2N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X C (  ._|_  `  Y ) ) )

Proof of Theorem cmt2N
StepHypRef Expression
1 omllat 28562 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  Lat )
213ad2ant1 981 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
3 cmt2.b . . . . . . 7  |-  B  =  ( Base `  K
)
4 eqid 2256 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
53, 4latmcl 14084 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
61, 5syl3an1 1220 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
7 simp2 961 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
8 omlop 28561 . . . . . . . 8  |-  ( K  e.  OML  ->  K  e.  OP )
983ad2ant1 981 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
10 simp3 962 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
11 cmt2.o . . . . . . . 8  |-  ._|_  =  ( oc `  K )
123, 11opoccl 28514 . . . . . . 7  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
139, 10, 12syl2anc 645 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
143, 4latmcl 14084 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X ( meet `  K
) (  ._|_  `  Y
) )  e.  B
)
152, 7, 13, 14syl3anc 1187 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) (  ._|_  `  Y ) )  e.  B )
16 eqid 2256 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
173, 16latjcom 14092 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X ( meet `  K
) Y )  e.  B  /\  ( X ( meet `  K
) (  ._|_  `  Y
) )  e.  B
)  ->  ( ( X ( meet `  K
) Y ) (
join `  K )
( X ( meet `  K ) (  ._|_  `  Y ) ) )  =  ( ( X ( meet `  K
) (  ._|_  `  Y
) ) ( join `  K ) ( X ( meet `  K
) Y ) ) )
182, 6, 15, 17syl3anc 1187 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( join `  K ) ( X ( meet `  K
) (  ._|_  `  Y
) ) )  =  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K ) Y ) ) )
193, 11opococ 28515 . . . . . . 7  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
209, 10, 19syl2anc 645 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
2120oveq2d 5773 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) (  ._|_  `  (  ._|_  `  Y ) ) )  =  ( X ( meet `  K
) Y ) )
2221oveq2d 5773 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  (  ._|_  `  Y ) ) ) )  =  ( ( X ( meet `  K
) (  ._|_  `  Y
) ) ( join `  K ) ( X ( meet `  K
) Y ) ) )
2318, 22eqtr4d 2291 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( join `  K ) ( X ( meet `  K
) (  ._|_  `  Y
) ) )  =  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  (  ._|_  `  Y ) ) ) ) )
2423eqeq2d 2267 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  ( ( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  Y )
) )  <->  X  =  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
25 cmt2.c . . 3  |-  C  =  ( cm `  K
)
263, 16, 4, 11, 25cmtvalN 28531 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X ( meet `  K
) Y ) (
join `  K )
( X ( meet `  K ) (  ._|_  `  Y ) ) ) ) )
273, 16, 4, 11, 25cmtvalN 28531 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X C (  ._|_  `  Y
)  <->  X  =  (
( X ( meet `  K ) (  ._|_  `  Y ) ) (
join `  K )
( X ( meet `  K ) (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
2813, 27syld3an3 1232 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C ( 
._|_  `  Y )  <->  X  =  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
2924, 26, 283bitr4d 278 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X C (  ._|_  `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   occoc 13143   joincjn 14005   meetcmee 14006   Latclat 14078   OPcops 28492   cmccmtN 28493   OMLcoml 28495
This theorem is referenced by:  cmt3N  28571  cmt4N  28572  omlfh1N  28578
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-join 14037  df-lat 14079  df-oposet 28496  df-cmtN 28497  df-ol 28498  df-oml 28499
  Copyright terms: Public domain W3C validator