Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr2N Unicode version

Theorem cmtbr2N 28132
Description: Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 22023 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b  |-  B  =  ( Base `  K
)
cmtbr2.j  |-  .\/  =  ( join `  K )
cmtbr2.m  |-  ./\  =  ( meet `  K )
cmtbr2.o  |-  ._|_  =  ( oc `  K )
cmtbr2.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtbr2N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  .\/  Y ) 
./\  ( X  .\/  (  ._|_  `  Y )
) ) ) )

Proof of Theorem cmtbr2N
StepHypRef Expression
1 cmtbr2.b . . 3  |-  B  =  ( Base `  K
)
2 cmtbr2.o . . 3  |-  ._|_  =  ( oc `  K )
3 cmtbr2.c . . 3  |-  C  =  ( cm `  K
)
41, 2, 3cmt4N 28131 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
(  ._|_  `  X ) C (  ._|_  `  Y
) ) )
5 simp1 960 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
6 omlop 28120 . . . . 5  |-  ( K  e.  OML  ->  K  e.  OP )
763ad2ant1 981 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
8 simp2 961 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
91, 2opoccl 28073 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
107, 8, 9syl2anc 645 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
11 simp3 962 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
121, 2opoccl 28073 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
137, 11, 12syl2anc 645 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
14 cmtbr2.j . . . 4  |-  .\/  =  ( join `  K )
15 cmtbr2.m . . . 4  |-  ./\  =  ( meet `  K )
161, 14, 15, 2, 3cmtvalN 28090 . . 3  |-  ( ( K  e.  OML  /\  (  ._|_  `  X )  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (
(  ._|_  `  X ) C (  ._|_  `  Y
)  <->  (  ._|_  `  X
)  =  ( ( (  ._|_  `  X ) 
./\  (  ._|_  `  Y
) )  .\/  (
(  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
175, 10, 13, 16syl3anc 1187 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
) C (  ._|_  `  Y )  <->  (  ._|_  `  X )  =  ( ( (  ._|_  `  X
)  ./\  (  ._|_  `  Y ) )  .\/  ( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
18 eqcom 2255 . . . 4  |-  ( X  =  ( ( X 
.\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) )  <-> 
( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  =  X )
1918a1i 12 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  ( ( X  .\/  Y
)  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  <->  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) )  =  X ) )
20 omllat 28121 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  Lat )
21203ad2ant1 981 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
221, 14latjcl 14000 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
2320, 22syl3an1 1220 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
241, 14latjcl 14000 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X  .\/  (  ._|_  `  Y
) )  e.  B
)
2521, 8, 13, 24syl3anc 1187 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (  ._|_  `  Y ) )  e.  B )
261, 15latmcl 14001 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  ( X  .\/  (  ._|_  `  Y
) )  e.  B
)  ->  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) )  e.  B )
2721, 23, 25, 26syl3anc 1187 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  e.  B )
281, 2opcon3b 28075 . . . 4  |-  ( ( K  e.  OP  /\  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  e.  B  /\  X  e.  B )  ->  (
( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  =  X  <->  (  ._|_  `  X
)  =  (  ._|_  `  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) ) ) ) )
297, 27, 8, 28syl3anc 1187 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( X 
.\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) )  =  X  <->  (  ._|_  `  X )  =  ( 
._|_  `  ( ( X 
.\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) ) ) ) )
30 omlol 28119 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  OL )
31303ad2ant1 981 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OL )
321, 14, 15, 2oldmm1 28096 . . . . . 6  |-  ( ( K  e.  OL  /\  ( X  .\/  Y )  e.  B  /\  ( X  .\/  (  ._|_  `  Y
) )  e.  B
)  ->  (  ._|_  `  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) ) )  =  ( (  ._|_  `  ( X  .\/  Y
) )  .\/  (  ._|_  `  ( X  .\/  (  ._|_  `  Y )
) ) ) )
3331, 23, 25, 32syl3anc 1187 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( X  .\/  Y ) 
./\  ( X  .\/  (  ._|_  `  Y )
) ) )  =  ( (  ._|_  `  ( X  .\/  Y ) ) 
.\/  (  ._|_  `  ( X  .\/  (  ._|_  `  Y
) ) ) ) )
341, 14, 15, 2oldmj1 28100 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
.\/  Y ) )  =  ( (  ._|_  `  X )  ./\  (  ._|_  `  Y ) ) )
3530, 34syl3an1 1220 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
.\/  Y ) )  =  ( (  ._|_  `  X )  ./\  (  ._|_  `  Y ) ) )
361, 14, 15, 2oldmj1 28100 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (  ._|_  `  ( X  .\/  (  ._|_  `  Y )
) )  =  ( (  ._|_  `  X ) 
./\  (  ._|_  `  (  ._|_  `  Y ) ) ) )
3731, 8, 13, 36syl3anc 1187 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
.\/  (  ._|_  `  Y
) ) )  =  ( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) )
3835, 37oveq12d 5728 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  ( X  .\/  Y ) ) 
.\/  (  ._|_  `  ( X  .\/  (  ._|_  `  Y
) ) ) )  =  ( ( ( 
._|_  `  X )  ./\  (  ._|_  `  Y )
)  .\/  ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) )
3933, 38eqtrd 2285 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( X  .\/  Y ) 
./\  ( X  .\/  (  ._|_  `  Y )
) ) )  =  ( ( (  ._|_  `  X )  ./\  (  ._|_  `  Y ) ) 
.\/  ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) )
4039eqeq2d 2264 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  =  (  ._|_  `  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) ) )  <-> 
(  ._|_  `  X )  =  ( ( ( 
._|_  `  X )  ./\  (  ._|_  `  Y )
)  .\/  ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
4119, 29, 403bitrrd 273 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  =  ( ( (  ._|_  `  X ) 
./\  (  ._|_  `  Y
) )  .\/  (
(  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) )  <->  X  =  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) ) ) )
424, 17, 413bitrd 272 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  .\/  Y ) 
./\  ( X  .\/  (  ._|_  `  Y )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   occoc 13090   joincjn 13922   meetcmee 13923   Latclat 13995   OPcops 28051   cmccmtN 28052   OLcol 28053   OMLcoml 28054
This theorem is referenced by:  cmtbr3N  28133
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-lat 13996  df-oposet 28055  df-cmtN 28056  df-ol 28057  df-oml 28058
  Copyright terms: Public domain W3C validator