Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr2N Unicode version

Theorem cmtbr2N 29890
Description: Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 23086 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b  |-  B  =  ( Base `  K
)
cmtbr2.j  |-  .\/  =  ( join `  K )
cmtbr2.m  |-  ./\  =  ( meet `  K )
cmtbr2.o  |-  ._|_  =  ( oc `  K )
cmtbr2.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtbr2N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  .\/  Y ) 
./\  ( X  .\/  (  ._|_  `  Y )
) ) ) )

Proof of Theorem cmtbr2N
StepHypRef Expression
1 cmtbr2.b . . 3  |-  B  =  ( Base `  K
)
2 cmtbr2.o . . 3  |-  ._|_  =  ( oc `  K )
3 cmtbr2.c . . 3  |-  C  =  ( cm `  K
)
41, 2, 3cmt4N 29889 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
(  ._|_  `  X ) C (  ._|_  `  Y
) ) )
5 simp1 957 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
6 omlop 29878 . . . . 5  |-  ( K  e.  OML  ->  K  e.  OP )
763ad2ant1 978 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
8 simp2 958 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
91, 2opoccl 29831 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
107, 8, 9syl2anc 643 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
11 simp3 959 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
121, 2opoccl 29831 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
137, 11, 12syl2anc 643 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
14 cmtbr2.j . . . 4  |-  .\/  =  ( join `  K )
15 cmtbr2.m . . . 4  |-  ./\  =  ( meet `  K )
161, 14, 15, 2, 3cmtvalN 29848 . . 3  |-  ( ( K  e.  OML  /\  (  ._|_  `  X )  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (
(  ._|_  `  X ) C (  ._|_  `  Y
)  <->  (  ._|_  `  X
)  =  ( ( (  ._|_  `  X ) 
./\  (  ._|_  `  Y
) )  .\/  (
(  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
175, 10, 13, 16syl3anc 1184 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
) C (  ._|_  `  Y )  <->  (  ._|_  `  X )  =  ( ( (  ._|_  `  X
)  ./\  (  ._|_  `  Y ) )  .\/  ( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
18 eqcom 2437 . . . 4  |-  ( X  =  ( ( X 
.\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) )  <-> 
( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  =  X )
1918a1i 11 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  ( ( X  .\/  Y
)  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  <->  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) )  =  X ) )
20 omllat 29879 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  Lat )
21203ad2ant1 978 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
221, 14latjcl 14467 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
2320, 22syl3an1 1217 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
241, 14latjcl 14467 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X  .\/  (  ._|_  `  Y
) )  e.  B
)
2521, 8, 13, 24syl3anc 1184 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (  ._|_  `  Y ) )  e.  B )
261, 15latmcl 14468 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  ( X  .\/  (  ._|_  `  Y
) )  e.  B
)  ->  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) )  e.  B )
2721, 23, 25, 26syl3anc 1184 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  e.  B )
281, 2opcon3b 29833 . . . 4  |-  ( ( K  e.  OP  /\  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  e.  B  /\  X  e.  B )  ->  (
( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) )  =  X  <->  (  ._|_  `  X
)  =  (  ._|_  `  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) ) ) ) )
297, 27, 8, 28syl3anc 1184 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( X 
.\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) )  =  X  <->  (  ._|_  `  X )  =  ( 
._|_  `  ( ( X 
.\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y ) ) ) ) ) )
30 omlol 29877 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  OL )
31303ad2ant1 978 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OL )
321, 14, 15, 2oldmm1 29854 . . . . . 6  |-  ( ( K  e.  OL  /\  ( X  .\/  Y )  e.  B  /\  ( X  .\/  (  ._|_  `  Y
) )  e.  B
)  ->  (  ._|_  `  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) ) )  =  ( (  ._|_  `  ( X  .\/  Y
) )  .\/  (  ._|_  `  ( X  .\/  (  ._|_  `  Y )
) ) ) )
3331, 23, 25, 32syl3anc 1184 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( X  .\/  Y ) 
./\  ( X  .\/  (  ._|_  `  Y )
) ) )  =  ( (  ._|_  `  ( X  .\/  Y ) ) 
.\/  (  ._|_  `  ( X  .\/  (  ._|_  `  Y
) ) ) ) )
341, 14, 15, 2oldmj1 29858 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
.\/  Y ) )  =  ( (  ._|_  `  X )  ./\  (  ._|_  `  Y ) ) )
3530, 34syl3an1 1217 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
.\/  Y ) )  =  ( (  ._|_  `  X )  ./\  (  ._|_  `  Y ) ) )
361, 14, 15, 2oldmj1 29858 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (  ._|_  `  ( X  .\/  (  ._|_  `  Y )
) )  =  ( (  ._|_  `  X ) 
./\  (  ._|_  `  (  ._|_  `  Y ) ) ) )
3731, 8, 13, 36syl3anc 1184 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
.\/  (  ._|_  `  Y
) ) )  =  ( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) )
3835, 37oveq12d 6090 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  ( X  .\/  Y ) ) 
.\/  (  ._|_  `  ( X  .\/  (  ._|_  `  Y
) ) ) )  =  ( ( ( 
._|_  `  X )  ./\  (  ._|_  `  Y )
)  .\/  ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) )
3933, 38eqtrd 2467 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( X  .\/  Y ) 
./\  ( X  .\/  (  ._|_  `  Y )
) ) )  =  ( ( (  ._|_  `  X )  ./\  (  ._|_  `  Y ) ) 
.\/  ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) )
4039eqeq2d 2446 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  =  (  ._|_  `  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) ) )  <-> 
(  ._|_  `  X )  =  ( ( ( 
._|_  `  X )  ./\  (  ._|_  `  Y )
)  .\/  ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
4119, 29, 403bitrrd 272 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  =  ( ( (  ._|_  `  X ) 
./\  (  ._|_  `  Y
) )  .\/  (
(  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) )  <->  X  =  ( ( X  .\/  Y )  ./\  ( X  .\/  (  ._|_  `  Y
) ) ) ) )
424, 17, 413bitrd 271 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  .\/  Y ) 
./\  ( X  .\/  (  ._|_  `  Y )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   Basecbs 13457   occoc 13525   joincjn 14389   meetcmee 14390   Latclat 14462   OPcops 29809   cmccmtN 29810   OLcol 29811   OMLcoml 29812
This theorem is referenced by:  cmtbr3N  29891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-poset 14391  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-lat 14463  df-oposet 29813  df-cmtN 29814  df-ol 29815  df-oml 29816
  Copyright terms: Public domain W3C validator