Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr3N Unicode version

Theorem cmtbr3N 30066
Description: Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 22203 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b  |-  B  =  ( Base `  K
)
cmtbr2.j  |-  .\/  =  ( join `  K )
cmtbr2.m  |-  ./\  =  ( meet `  K )
cmtbr2.o  |-  ._|_  =  ( oc `  K )
cmtbr2.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtbr3N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) ) )

Proof of Theorem cmtbr3N
StepHypRef Expression
1 cmtbr2.b . . . . 5  |-  B  =  ( Base `  K
)
2 cmtbr2.c . . . . 5  |-  C  =  ( cm `  K
)
31, 2cmtcomN 30061 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
Y C X ) )
4 cmtbr2.j . . . . . 6  |-  .\/  =  ( join `  K )
5 cmtbr2.m . . . . . 6  |-  ./\  =  ( meet `  K )
6 cmtbr2.o . . . . . 6  |-  ._|_  =  ( oc `  K )
71, 4, 5, 6, 2cmtbr2N 30065 . . . . 5  |-  ( ( K  e.  OML  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y C X  <-> 
Y  =  ( ( Y  .\/  X ) 
./\  ( Y  .\/  (  ._|_  `  X )
) ) ) )
873com23 1157 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y C X  <-> 
Y  =  ( ( Y  .\/  X ) 
./\  ( Y  .\/  (  ._|_  `  X )
) ) ) )
93, 8bitrd 244 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
Y  =  ( ( Y  .\/  X ) 
./\  ( Y  .\/  (  ._|_  `  X )
) ) ) )
10 oveq2 5882 . . . . . 6  |-  ( Y  =  ( ( Y 
.\/  X )  ./\  ( Y  .\/  (  ._|_  `  X ) ) )  ->  ( X  ./\  Y )  =  ( X 
./\  ( ( Y 
.\/  X )  ./\  ( Y  .\/  (  ._|_  `  X ) ) ) ) )
1110adantl 452 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  Y  =  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  ->  ( X  ./\  Y )  =  ( X 
./\  ( ( Y 
.\/  X )  ./\  ( Y  .\/  (  ._|_  `  X ) ) ) ) )
12 omlol 30052 . . . . . . . . 9  |-  ( K  e.  OML  ->  K  e.  OL )
13123ad2ant1 976 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OL )
14 simp2 956 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
15 omllat 30054 . . . . . . . . . 10  |-  ( K  e.  OML  ->  K  e.  Lat )
16153ad2ant1 976 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
17 simp3 957 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
181, 4latjcl 14172 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .\/  X
)  e.  B )
1916, 17, 14, 18syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .\/  X
)  e.  B )
20 omlop 30053 . . . . . . . . . . 11  |-  ( K  e.  OML  ->  K  e.  OP )
21203ad2ant1 976 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
221, 6opoccl 30006 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
2321, 14, 22syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
241, 4latjcl 14172 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  (  ._|_  `  X )  e.  B )  ->  ( Y  .\/  (  ._|_  `  X
) )  e.  B
)
2516, 17, 23, 24syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .\/  (  ._|_  `  X ) )  e.  B )
261, 5latmassOLD 30041 . . . . . . . 8  |-  ( ( K  e.  OL  /\  ( X  e.  B  /\  ( Y  .\/  X
)  e.  B  /\  ( Y  .\/  (  ._|_  `  X ) )  e.  B ) )  -> 
( ( X  ./\  ( Y  .\/  X ) )  ./\  ( Y  .\/  (  ._|_  `  X
) ) )  =  ( X  ./\  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) ) )
2713, 14, 19, 25, 26syl13anc 1184 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( Y  .\/  X ) )  ./\  ( Y  .\/  (  ._|_  `  X
) ) )  =  ( X  ./\  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) ) )
281, 4latjcom 14181 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .\/  X
)  =  ( X 
.\/  Y ) )
2916, 17, 14, 28syl3anc 1182 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .\/  X
)  =  ( X 
.\/  Y ) )
3029oveq2d 5890 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  ( Y  .\/  X ) )  =  ( X  ./\  ( X  .\/  Y ) ) )
311, 4, 5latabs2 14210 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  ( X  .\/  Y ) )  =  X )
3215, 31syl3an1 1215 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  ( X  .\/  Y ) )  =  X )
3330, 32eqtrd 2328 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  ( Y  .\/  X ) )  =  X )
341, 4latjcom 14181 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  (  ._|_  `  X )  e.  B )  ->  ( Y  .\/  (  ._|_  `  X
) )  =  ( (  ._|_  `  X ) 
.\/  Y ) )
3516, 17, 23, 34syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .\/  (  ._|_  `  X ) )  =  ( (  ._|_  `  X )  .\/  Y
) )
3633, 35oveq12d 5892 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( Y  .\/  X ) )  ./\  ( Y  .\/  (  ._|_  `  X
) ) )  =  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) ) )
3727, 36eqtr3d 2330 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  =  ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
) )
3837adantr 451 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  Y  =  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  ->  ( X  ./\  ( ( Y  .\/  X )  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  =  ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
) )
3911, 38eqtr2d 2329 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  Y  =  (
( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) ) )  ->  ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y ) )
4039ex 423 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  =  ( ( Y  .\/  X
)  ./\  ( Y  .\/  (  ._|_  `  X
) ) )  -> 
( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) ) )
419, 40sylbid 206 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y ) ) )
42 simp1 955 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
431, 6opoccl 30006 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
4421, 17, 43syl2anc 642 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
451, 5latmcl 14173 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X  ./\  (  ._|_  `  Y
) )  e.  B
)
4616, 14, 44, 45syl3anc 1182 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (  ._|_  `  Y ) )  e.  B )
4742, 46, 143jca 1132 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  ( X  ./\  (  ._|_  `  Y ) )  e.  B  /\  X  e.  B ) )
48 eqid 2296 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
491, 48, 5latmle1 14198 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X  ./\  (  ._|_  `  Y
) ) ( le
`  K ) X )
5016, 14, 44, 49syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (  ._|_  `  Y ) ) ( le `  K
) X )
511, 48, 4, 5, 6omllaw2N 30056 . . . . . . . 8  |-  ( ( K  e.  OML  /\  ( X  ./\  (  ._|_  `  Y ) )  e.  B  /\  X  e.  B )  ->  (
( X  ./\  (  ._|_  `  Y ) ) ( le `  K
) X  ->  (
( X  ./\  (  ._|_  `  Y ) ) 
.\/  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X )
)  =  X ) )
5247, 50, 51sylc 56 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  (  ._|_  `  Y )
)  .\/  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
) )  =  X )
531, 6opoccl 30006 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  ( X  ./\  (  ._|_  `  Y ) )  e.  B )  ->  (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  e.  B
)
5421, 46, 53syl2anc 642 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  e.  B )
551, 5latmcl 14173 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  e.  B  /\  X  e.  B
)  ->  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
)  e.  B )
5616, 54, 14, 55syl3anc 1182 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X )  e.  B )
571, 4latjcom 14181 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( X  ./\  (  ._|_  `  Y ) )  e.  B  /\  ( ( 
._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
)  e.  B )  ->  ( ( X 
./\  (  ._|_  `  Y
) )  .\/  (
(  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X
) )  =  ( ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) )
5816, 46, 56, 57syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  (  ._|_  `  Y )
)  .\/  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
) )  =  ( ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) )
5952, 58eqtr3d 2330 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  =  ( ( (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  ./\  X )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) )
6059adantr 451 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) )  ->  X  =  ( ( ( 
._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
)  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) )
611, 4, 5, 6oldmm3N 30031 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  =  ( (  ._|_  `  X
)  .\/  Y )
)
6212, 61syl3an1 1215 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  =  ( (  ._|_  `  X
)  .\/  Y )
)
6362oveq2d 5890 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) ) )  =  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) ) )
641, 5latmcom 14197 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  e.  B
)  ->  ( X  ./\  (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) ) )  =  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X )
)
6516, 14, 54, 64syl3anc 1182 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) ) )  =  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X ) )
6663, 65eqtr3d 2330 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X ) )
6766eqeq1d 2304 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y )  <->  ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y )
) )  ./\  X
)  =  ( X 
./\  Y ) ) )
68 oveq1 5881 . . . . . . 7  |-  ( ( (  ._|_  `  ( X 
./\  (  ._|_  `  Y
) ) )  ./\  X )  =  ( X 
./\  Y )  -> 
( ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X )  .\/  ( X  ./\  (  ._|_  `  Y ) ) )  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) )
6967, 68syl6bi 219 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y )  -> 
( ( (  ._|_  `  ( X  ./\  (  ._|_  `  Y ) ) )  ./\  X )  .\/  ( X  ./\  (  ._|_  `  Y ) ) )  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
7069imp 418 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) )  ->  (
( (  ._|_  `  ( X  ./\  (  ._|_  `  Y
) ) )  ./\  X )  .\/  ( X 
./\  (  ._|_  `  Y
) ) )  =  ( ( X  ./\  Y )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) )
7160, 70eqtrd 2328 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) )  ->  X  =  ( ( X 
./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) )
7271ex 423 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y )  ->  X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
731, 4, 5, 6, 2cmtvalN 30023 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
7472, 73sylibrd 225 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  ( (  ._|_  `  X
)  .\/  Y )
)  =  ( X 
./\  Y )  ->  X C Y ) )
7541, 74impbid 183 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  ./\  (
(  ._|_  `  X )  .\/  Y ) )  =  ( X  ./\  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   occoc 13232   joincjn 14094   meetcmee 14095   Latclat 14167   OPcops 29984   cmccmtN 29985   OLcol 29986   OMLcoml 29987
This theorem is referenced by:  cmtbr4N  30067  omlfh1N  30070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-lat 14168  df-oposet 29988  df-cmtN 29989  df-ol 29990  df-oml 29991
  Copyright terms: Public domain W3C validator