MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt1f Unicode version

Theorem cncfmpt1f 18379
Description: Composition of continuous functions.  -cn-> analog of cnmpt11f 17320. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
cncfmpt1f.2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
Assertion
Ref Expression
cncfmpt1f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Distinct variable groups:    x, F    ph, x    x, X
Allowed substitution hint:    A( x)

Proof of Theorem cncfmpt1f
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2 cncff 18359 . . . . 5  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  A ) : X --> CC )
31, 2syl 17 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
4 eqid 2258 . . . . 5  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
54fmpt 5615 . . . 4  |-  ( A. x  e.  X  A  e.  CC  <->  ( x  e.  X  |->  A ) : X --> CC )
63, 5sylibr 205 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  CC )
7 eqidd 2259 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
8 cncfmpt1f.1 . . . . 5  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
9 cncff 18359 . . . . 5  |-  ( F  e.  ( CC -cn-> CC )  ->  F : CC
--> CC )
108, 9syl 17 . . . 4  |-  ( ph  ->  F : CC --> CC )
1110feqmptd 5509 . . 3  |-  ( ph  ->  F  =  ( y  e.  CC  |->  ( F `
 y ) ) )
12 fveq2 5458 . . 3  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
136, 7, 11, 12fmptcof 5626 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  ( F `  A ) ) )
141, 8cncfco 18373 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  e.  ( X -cn-> CC ) )
1513, 14eqeltrrd 2333 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1621   A.wral 2518    e. cmpt 4051    o. ccom 4665   -->wf 4669   ` cfv 4673  (class class class)co 5792   CCcc 8703   -cn->ccncf 18342
This theorem is referenced by:  taylthlem2  19715  sincn  19782  coscn  19783  pige3  19847
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-2 9772  df-cj 11549  df-re 11550  df-im 11551  df-abs 11686  df-cncf 18344
  Copyright terms: Public domain W3C validator