MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt1f Unicode version

Theorem cncfmpt1f 18417
Description: Composition of continuous functions.  -cn-> analog of cnmpt11f 17358. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
cncfmpt1f.2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
Assertion
Ref Expression
cncfmpt1f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Distinct variable groups:    x, F    ph, x    x, X
Allowed substitution hint:    A( x)

Proof of Theorem cncfmpt1f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2 cncff 18397 . . . . 5  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  A ) : X --> CC )
31, 2syl 15 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
4 eqid 2283 . . . . 5  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
54fmpt 5681 . . . 4  |-  ( A. x  e.  X  A  e.  CC  <->  ( x  e.  X  |->  A ) : X --> CC )
63, 5sylibr 203 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  CC )
7 eqidd 2284 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
8 cncfmpt1f.1 . . . . 5  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
9 cncff 18397 . . . . 5  |-  ( F  e.  ( CC -cn-> CC )  ->  F : CC
--> CC )
108, 9syl 15 . . . 4  |-  ( ph  ->  F : CC --> CC )
1110feqmptd 5575 . . 3  |-  ( ph  ->  F  =  ( y  e.  CC  |->  ( F `
 y ) ) )
12 fveq2 5525 . . 3  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
136, 7, 11, 12fmptcof 5692 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  ( F `  A ) ) )
141, 8cncfco 18411 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  e.  ( X -cn-> CC ) )
1513, 14eqeltrrd 2358 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   A.wral 2543    e. cmpt 4077    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   -cn->ccncf 18380
This theorem is referenced by:  taylthlem2  19753  sincn  19820  coscn  19821  pige3  19885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-2 9804  df-cj 11584  df-re 11585  df-im 11586  df-abs 11721  df-cncf 18382
  Copyright terms: Public domain W3C validator