MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnpi Unicode version

Theorem cncnpi 17300
Description: A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
cnsscnp.1  |-  X  = 
U. J
Assertion
Ref Expression
cncnpi  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F  e.  ( ( J  CnP  K ) `
 A ) )

Proof of Theorem cncnpi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsscnp.1 . . . 4  |-  X  = 
U. J
2 eqid 2408 . . . 4  |-  U. K  =  U. K
31, 2cnf 17268 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> U. K )
43adantr 452 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F : X --> U. K
)
5 cnima 17287 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  y  e.  K )  ->  ( `' F "
y )  e.  J
)
65ad2ant2r 728 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( `' F "
y )  e.  J
)
7 simpr 448 . . . . . . 7  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  A  e.  X )
87adantr 452 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  A  e.  X )
9 simprr 734 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( F `  A
)  e.  y )
103ad2antrr 707 . . . . . . 7  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  F : X --> U. K
)
11 ffn 5554 . . . . . . 7  |-  ( F : X --> U. K  ->  F  Fn  X )
12 elpreima 5813 . . . . . . 7  |-  ( F  Fn  X  ->  ( A  e.  ( `' F " y )  <->  ( A  e.  X  /\  ( F `  A )  e.  y ) ) )
1310, 11, 123syl 19 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  -> 
( A  e.  ( `' F " y )  <-> 
( A  e.  X  /\  ( F `  A
)  e.  y ) ) )
148, 9, 13mpbir2and 889 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  A  e.  ( `' F " y ) )
15 eqimss 3364 . . . . . . . 8  |-  ( x  =  ( `' F " y )  ->  x  C_  ( `' F "
y ) )
1615biantrud 494 . . . . . . 7  |-  ( x  =  ( `' F " y )  ->  ( A  e.  x  <->  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) ) )
17 eleq2 2469 . . . . . . 7  |-  ( x  =  ( `' F " y )  ->  ( A  e.  x  <->  A  e.  ( `' F " y ) ) )
1816, 17bitr3d 247 . . . . . 6  |-  ( x  =  ( `' F " y )  ->  (
( A  e.  x  /\  x  C_  ( `' F " y ) )  <->  A  e.  ( `' F " y ) ) )
1918rspcev 3016 . . . . 5  |-  ( ( ( `' F "
y )  e.  J  /\  A  e.  ( `' F " y ) )  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) )
206, 14, 19syl2anc 643 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  ( y  e.  K  /\  ( F `  A )  e.  y ) )  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) )
2120expr 599 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  A  e.  X
)  /\  y  e.  K )  ->  (
( F `  A
)  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) )
2221ralrimiva 2753 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) )
23 cntop1 17262 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2423adantr 452 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  J  e.  Top )
251toptopon 16957 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
2624, 25sylib 189 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  J  e.  (TopOn `  X ) )
27 cntop2 17263 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
2827adantr 452 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  K  e.  Top )
292toptopon 16957 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3028, 29sylib 189 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  K  e.  (TopOn `  U. K ) )
31 iscnp3 17266 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> U. K  /\  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F "
y ) ) ) ) ) )
3226, 30, 7, 31syl3anc 1184 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  ( F  e.  ( ( J  CnP  K
) `  A )  <->  ( F : X --> U. K  /\  A. y  e.  K  ( ( F `  A )  e.  y  ->  E. x  e.  J  ( A  e.  x  /\  x  C_  ( `' F " y ) ) ) ) ) )
334, 22, 32mpbir2and 889 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F  e.  ( ( J  CnP  K ) `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670   E.wrex 2671    C_ wss 3284   U.cuni 3979   `'ccnv 4840   "cima 4844    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6044   Topctop 16917  TopOnctopon 16918    Cn ccn 17246    CnP ccnp 17247
This theorem is referenced by:  cnsscnp  17301  cncnp  17302  lmcn  17327  ptcn  17616  tmdcn2  18076  ghmcnp  18101  tsmsmhm  18132  tsmsadd  18133  dvcnp2  19763  dvaddbr  19781  dvmulbr  19782  dvcobr  19789  dvcjbr  19792  dvcnvlem  19817  lhop1lem  19854  dvcnvrelem2  19859  ftc1cn  19884  taylthlem2  20247  psercn  20299  abelth  20314  cxpcn3  20589  efrlim  20765  blocni  22263  cvmlift2lem11  24957  cvmlift2lem12  24958  cvmlift3lem7  24969  ftc1cnnc  26182
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-map 6983  df-top 16922  df-topon 16925  df-cn 17249  df-cnp 17250
  Copyright terms: Public domain W3C validator