MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncombf Unicode version

Theorem cncombf 19013
Description: The composition of a continuous function with a measurable function is measurable. (More generally,  G can be a Borel-measurable function, but notably the condition that  G be only measurable is too weak, the usual counterexample taking 
G to be the Cantor function and  F the indicator function of the  G-image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncombf  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( G  o.  F )  e. MblFn )

Proof of Theorem cncombf
Dummy variables  x  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 957 . . . . 5  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  G  e.  ( B -cn-> CC ) )
2 cncff 18397 . . . . 5  |-  ( G  e.  ( B -cn-> CC )  ->  G : B
--> CC )
31, 2syl 15 . . . 4  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  G : B
--> CC )
4 simp2 956 . . . 4  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  F : A
--> B )
5 fco 5398 . . . 4  |-  ( ( G : B --> CC  /\  F : A --> B )  ->  ( G  o.  F ) : A --> CC )
63, 4, 5syl2anc 642 . . 3  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( G  o.  F ) : A --> CC )
7 fdm 5393 . . . . . 6  |-  ( F : A --> B  ->  dom  F  =  A )
84, 7syl 15 . . . . 5  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  dom  F  =  A )
9 mbfdm 18983 . . . . . 6  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
1093ad2ant1 976 . . . . 5  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  dom  F  e. 
dom  vol )
118, 10eqeltrrd 2358 . . . 4  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  A  e.  dom  vol )
12 mblss 18890 . . . 4  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1311, 12syl 15 . . 3  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  A  C_  RR )
14 cnex 8818 . . . 4  |-  CC  e.  _V
15 reex 8828 . . . 4  |-  RR  e.  _V
16 elpm2r 6788 . . . 4  |-  ( ( ( CC  e.  _V  /\  RR  e.  _V )  /\  ( ( G  o.  F ) : A --> CC  /\  A  C_  RR ) )  ->  ( G  o.  F )  e.  ( CC  ^pm  RR ) )
1714, 15, 16mpanl12 663 . . 3  |-  ( ( ( G  o.  F
) : A --> CC  /\  A  C_  RR )  -> 
( G  o.  F
)  e.  ( CC 
^pm  RR ) )
186, 13, 17syl2anc 642 . 2  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( G  o.  F )  e.  ( CC  ^pm  RR )
)
19 recncf 18406 . . . . . . . 8  |-  Re  e.  ( CC -cn-> RR )
2019a1i 10 . . . . . . 7  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  Re  e.  ( CC -cn-> RR ) )
211, 20cncfco 18411 . . . . . 6  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( Re  o.  G )  e.  ( B -cn-> RR ) )
2221adantr 451 . . . . 5  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  (
Re  o.  G )  e.  ( B -cn-> RR ) )
23 cnvco 4865 . . . . . . . . . 10  |-  `' ( g  o.  F )  =  ( `' F  o.  `' g )
2423imaeq1i 5009 . . . . . . . . 9  |-  ( `' ( g  o.  F
) " x )  =  ( ( `' F  o.  `' g ) " x )
25 imaco 5178 . . . . . . . . 9  |-  ( ( `' F  o.  `' g ) " x
)  =  ( `' F " ( `' g " x ) )
2624, 25eqtri 2303 . . . . . . . 8  |-  ( `' ( g  o.  F
) " x )  =  ( `' F " ( `' g "
x ) )
27 simplll 734 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  F  e. MblFn )
28 simpllr 735 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  F : A
--> B )
29 cncfrss 18395 . . . . . . . . . 10  |-  ( g  e.  ( B -cn-> RR )  ->  B  C_  CC )
3029adantl 452 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  B  C_  CC )
31 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  g  e.  ( B -cn-> RR ) )
32 ax-resscn 8794 . . . . . . . . . . . 12  |-  RR  C_  CC
33 eqid 2283 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
34 eqid 2283 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )t  B )  =  ( ( TopOpen ` fld )t  B )
3533tgioo2 18309 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
3633, 34, 35cncfcn 18413 . . . . . . . . . . . 12  |-  ( ( B  C_  CC  /\  RR  C_  CC )  ->  ( B -cn-> RR )  =  ( ( ( TopOpen ` fld )t  B )  Cn  ( topGen `
 ran  (,) )
) )
3730, 32, 36sylancl 643 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  ( B -cn->
RR )  =  ( ( ( TopOpen ` fld )t  B )  Cn  ( topGen `
 ran  (,) )
) )
3831, 37eleqtrd 2359 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  g  e.  ( ( ( TopOpen ` fld )t  B
)  Cn  ( topGen ` 
ran  (,) ) ) )
39 retopbas 18269 . . . . . . . . . . . 12  |-  ran  (,)  e. 
TopBases
40 bastg 16704 . . . . . . . . . . . 12  |-  ( ran 
(,)  e.  TopBases  ->  ran  (,)  C_  ( topGen `  ran  (,) )
)
4139, 40ax-mp 8 . . . . . . . . . . 11  |-  ran  (,)  C_  ( topGen `  ran  (,) )
42 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  x  e.  ran  (,) )
4341, 42sseldi 3178 . . . . . . . . . 10  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  x  e.  ( topGen `  ran  (,) )
)
44 cnima 16994 . . . . . . . . . 10  |-  ( ( g  e.  ( ( ( TopOpen ` fld )t  B )  Cn  ( topGen `
 ran  (,) )
)  /\  x  e.  ( topGen `  ran  (,) )
)  ->  ( `' g " x )  e.  ( ( TopOpen ` fld )t  B ) )
4538, 43, 44syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  ( `' g " x )  e.  ( ( TopOpen ` fld )t  B ) )
4633, 34mbfimaopn2 19012 . . . . . . . . 9  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  B  C_  CC )  /\  ( `' g " x
)  e.  ( (
TopOpen ` fld )t  B ) )  -> 
( `' F "
( `' g "
x ) )  e. 
dom  vol )
4727, 28, 30, 45, 46syl31anc 1185 . . . . . . . 8  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  ( `' F " ( `' g
" x ) )  e.  dom  vol )
4826, 47syl5eqel 2367 . . . . . . 7  |-  ( ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  /\  g  e.  ( B -cn-> RR ) )  ->  ( `' ( g  o.  F
) " x )  e.  dom  vol )
4948ralrimiva 2626 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  F : A --> B )  /\  x  e.  ran  (,) )  ->  A. g  e.  ( B -cn-> RR ) ( `' ( g  o.  F
) " x )  e.  dom  vol )
50493adantl3 1113 . . . . 5  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  A. g  e.  ( B -cn-> RR ) ( `' ( g  o.  F ) "
x )  e.  dom  vol )
51 coeq1 4841 . . . . . . . . . 10  |-  ( g  =  ( Re  o.  G )  ->  (
g  o.  F )  =  ( ( Re  o.  G )  o.  F ) )
52 coass 5191 . . . . . . . . . 10  |-  ( ( Re  o.  G )  o.  F )  =  ( Re  o.  ( G  o.  F )
)
5351, 52syl6eq 2331 . . . . . . . . 9  |-  ( g  =  ( Re  o.  G )  ->  (
g  o.  F )  =  ( Re  o.  ( G  o.  F
) ) )
5453cnveqd 4857 . . . . . . . 8  |-  ( g  =  ( Re  o.  G )  ->  `' ( g  o.  F
)  =  `' ( Re  o.  ( G  o.  F ) ) )
5554imaeq1d 5011 . . . . . . 7  |-  ( g  =  ( Re  o.  G )  ->  ( `' ( g  o.  F ) " x
)  =  ( `' ( Re  o.  ( G  o.  F )
) " x ) )
5655eleq1d 2349 . . . . . 6  |-  ( g  =  ( Re  o.  G )  ->  (
( `' ( g  o.  F ) "
x )  e.  dom  vol  <->  ( `' ( Re  o.  ( G  o.  F
) ) " x
)  e.  dom  vol ) )
5756rspcv 2880 . . . . 5  |-  ( ( Re  o.  G )  e.  ( B -cn-> RR )  ->  ( A. g  e.  ( B -cn->
RR ) ( `' ( g  o.  F
) " x )  e.  dom  vol  ->  ( `' ( Re  o.  ( G  o.  F
) ) " x
)  e.  dom  vol ) )
5822, 50, 57sylc 56 . . . 4  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  ( `' ( Re  o.  ( G  o.  F
) ) " x
)  e.  dom  vol )
59 imcncf 18407 . . . . . . . 8  |-  Im  e.  ( CC -cn-> RR )
6059a1i 10 . . . . . . 7  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  Im  e.  ( CC -cn-> RR ) )
611, 60cncfco 18411 . . . . . 6  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( Im  o.  G )  e.  ( B -cn-> RR ) )
6261adantr 451 . . . . 5  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  (
Im  o.  G )  e.  ( B -cn-> RR ) )
63 coeq1 4841 . . . . . . . . . 10  |-  ( g  =  ( Im  o.  G )  ->  (
g  o.  F )  =  ( ( Im  o.  G )  o.  F ) )
64 coass 5191 . . . . . . . . . 10  |-  ( ( Im  o.  G )  o.  F )  =  ( Im  o.  ( G  o.  F )
)
6563, 64syl6eq 2331 . . . . . . . . 9  |-  ( g  =  ( Im  o.  G )  ->  (
g  o.  F )  =  ( Im  o.  ( G  o.  F
) ) )
6665cnveqd 4857 . . . . . . . 8  |-  ( g  =  ( Im  o.  G )  ->  `' ( g  o.  F
)  =  `' ( Im  o.  ( G  o.  F ) ) )
6766imaeq1d 5011 . . . . . . 7  |-  ( g  =  ( Im  o.  G )  ->  ( `' ( g  o.  F ) " x
)  =  ( `' ( Im  o.  ( G  o.  F )
) " x ) )
6867eleq1d 2349 . . . . . 6  |-  ( g  =  ( Im  o.  G )  ->  (
( `' ( g  o.  F ) "
x )  e.  dom  vol  <->  ( `' ( Im  o.  ( G  o.  F
) ) " x
)  e.  dom  vol ) )
6968rspcv 2880 . . . . 5  |-  ( ( Im  o.  G )  e.  ( B -cn-> RR )  ->  ( A. g  e.  ( B -cn->
RR ) ( `' ( g  o.  F
) " x )  e.  dom  vol  ->  ( `' ( Im  o.  ( G  o.  F
) ) " x
)  e.  dom  vol ) )
7062, 50, 69sylc 56 . . . 4  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  ( `' ( Im  o.  ( G  o.  F
) ) " x
)  e.  dom  vol )
7158, 70jca 518 . . 3  |-  ( ( ( F  e. MblFn  /\  F : A --> B  /\  G  e.  ( B -cn-> CC ) )  /\  x  e. 
ran  (,) )  ->  (
( `' ( Re  o.  ( G  o.  F ) ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  ( G  o.  F ) )
" x )  e. 
dom  vol ) )
7271ralrimiva 2626 . 2  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  A. x  e.  ran  (,) ( ( `' ( Re  o.  ( G  o.  F
) ) " x
)  e.  dom  vol  /\  ( `' ( Im  o.  ( G  o.  F ) ) "
x )  e.  dom  vol ) )
73 ismbf1 18981 . 2  |-  ( ( G  o.  F )  e. MblFn 
<->  ( ( G  o.  F )  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  ( G  o.  F ) )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  ( G  o.  F )
) " x )  e.  dom  vol )
) )
7418, 72, 73sylanbrc 645 1  |-  ( ( F  e. MblFn  /\  F : A
--> B  /\  G  e.  ( B -cn-> CC ) )  ->  ( G  o.  F )  e. MblFn )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^pm cpm 6773   CCcc 8735   RRcr 8736   (,)cioo 10656   Recre 11582   Imcim 11583   ↾t crest 13325   TopOpenctopn 13326   topGenctg 13342  ℂfldccnfld 16377   TopBasesctb 16635    Cn ccn 16954   -cn->ccncf 18380   volcvol 18823  MblFncmbf 18969
This theorem is referenced by:  iblabslem  19182  iblabs  19183  bddmulibl  19193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ovol 18824  df-vol 18825  df-mbf 18975
  Copyright terms: Public domain W3C validator