MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncph Unicode version

Theorem cncph 21397
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cncph.6  |-  U  = 
<. <.  +  ,  x.  >. ,  abs >.
Assertion
Ref Expression
cncph  |-  U  e.  CPreHil
OLD

Proof of Theorem cncph
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncph.6 . 2  |-  U  = 
<. <.  +  ,  x.  >. ,  abs >.
2 eqid 2283 . . . 4  |-  <. <.  +  ,  x.  >. ,  abs >.  = 
<. <.  +  ,  x.  >. ,  abs >.
32cnnv 21245 . . 3  |-  <. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec
4 mulm1 9221 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( -u 1  x.  y )  =  -u y )
54adantl 452 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( -u 1  x.  y )  =  -u y )
65oveq2d 5874 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  (
-u 1  x.  y
) )  =  ( x  +  -u y
) )
7 negsub 9095 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  -u y )  =  ( x  -  y ) )
86, 7eqtrd 2315 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  (
-u 1  x.  y
) )  =  ( x  -  y ) )
98fveq2d 5529 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  +  ( -u
1  x.  y ) ) )  =  ( abs `  ( x  -  y ) ) )
109oveq1d 5873 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 )  =  ( ( abs `  ( x  -  y ) ) ^ 2 ) )
1110oveq2d 5874 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  ( -u 1  x.  y ) ) ) ^ 2 ) )  =  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  -  y ) ) ^ 2 ) ) )
12 sqabsadd 11767 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  +  y ) ) ^ 2 )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )
13 sqabssub 11768 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) ) ^ 2 )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )
1412, 13oveq12d 5876 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) )  +  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) ) )
15 abscl 11763 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
1615recnd 8861 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( abs `  x )  e.  CC )
1716sqcld 11243 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( abs `  x
) ^ 2 )  e.  CC )
18 abscl 11763 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( abs `  y )  e.  RR )
1918recnd 8861 . . . . . . . . . 10  |-  ( y  e.  CC  ->  ( abs `  y )  e.  CC )
2019sqcld 11243 . . . . . . . . 9  |-  ( y  e.  CC  ->  (
( abs `  y
) ^ 2 )  e.  CC )
21 addcl 8819 . . . . . . . . 9  |-  ( ( ( ( abs `  x
) ^ 2 )  e.  CC  /\  (
( abs `  y
) ^ 2 )  e.  CC )  -> 
( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC )
2217, 20, 21syl2an 463 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC )
23 2cn 9816 . . . . . . . . 9  |-  2  e.  CC
24 cjcl 11590 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
* `  y )  e.  CC )
25 mulcl 8821 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( * `  y
)  e.  CC )  ->  ( x  x.  ( * `  y
) )  e.  CC )
2624, 25sylan2 460 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  (
* `  y )
)  e.  CC )
27 recl 11595 . . . . . . . . . . 11  |-  ( ( x  x.  ( * `
 y ) )  e.  CC  ->  (
Re `  ( x  x.  ( * `  y
) ) )  e.  RR )
2827recnd 8861 . . . . . . . . . 10  |-  ( ( x  x.  ( * `
 y ) )  e.  CC  ->  (
Re `  ( x  x.  ( * `  y
) ) )  e.  CC )
2926, 28syl 15 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( Re `  (
x  x.  ( * `
 y ) ) )  e.  CC )
30 mulcl 8821 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( Re `  ( x  x.  ( * `  y ) ) )  e.  CC )  -> 
( 2  x.  (
Re `  ( x  x.  ( * `  y
) ) ) )  e.  CC )
3123, 29, 30sylancr 644 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( 2  x.  (
Re `  ( x  x.  ( * `  y
) ) ) )  e.  CC )
3222, 31, 22ppncand 9197 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) )  +  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )  =  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) ) ) )
3314, 32eqtrd 2315 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
34 2times 9843 . . . . . . . 8  |-  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC  ->  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3534eqcomd 2288 . . . . . . 7  |-  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC  ->  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3622, 35syl 15 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3733, 36eqtrd 2315 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3811, 37eqtrd 2315 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  ( -u 1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3938rgen2a 2609 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )
40 addex 10352 . . . 4  |-  +  e.  _V
41 mulex 10353 . . . 4  |-  x.  e.  _V
42 absf 11821 . . . . 5  |-  abs : CC
--> RR
43 cnex 8818 . . . . 5  |-  CC  e.  _V
44 fex 5749 . . . . 5  |-  ( ( abs : CC --> RR  /\  CC  e.  _V )  ->  abs  e.  _V )
4542, 43, 44mp2an 653 . . . 4  |-  abs  e.  _V
46 cnaddablo 21017 . . . . . . 7  |-  +  e.  AbelOp
47 ablogrpo 20951 . . . . . . 7  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
4846, 47ax-mp 8 . . . . . 6  |-  +  e.  GrpOp
49 ax-addf 8816 . . . . . . 7  |-  +  :
( CC  X.  CC )
--> CC
5049fdmi 5394 . . . . . 6  |-  dom  +  =  ( CC  X.  CC )
5148, 50grporn 20879 . . . . 5  |-  CC  =  ran  +
5251isphg 21395 . . . 4  |-  ( (  +  e.  _V  /\  x.  e.  _V  /\  abs  e.  _V )  ->  ( <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil OLD  <->  (
<. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec  /\  A. x  e.  CC  A. y  e.  CC  (
( ( abs `  (
x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  (
-u 1  x.  y
) ) ) ^
2 ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) ) ) )
5340, 41, 45, 52mp3an 1277 . . 3  |-  ( <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil OLD  <->  ( <. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) ) )
543, 39, 53mpbir2an 886 . 2  |-  <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil
OLD
551, 54eqeltri 2353 1  |-  U  e.  CPreHil
OLD
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   <.cop 3643    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   -ucneg 9038   2c2 9795   ^cexp 11104   *ccj 11581   Recre 11582   abscabs 11719   GrpOpcgr 20853   AbelOpcablo 20948   NrmCVeccnv 21140   CPreHil OLDccphlo 21390
This theorem is referenced by:  elimphu  21399  cnchl  21495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ablo 20949  df-vc 21102  df-nv 21148  df-ph 21391
  Copyright terms: Public domain W3C validator