MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncvc Unicode version

Theorem cncvc 21064
Description: The set of complex numbers is a complex vector space. The vector operation is  +, and the scalar product is  x.. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cncvc  |-  <.  +  ,  x.  >.  e.  CVec OLD

Proof of Theorem cncvc
StepHypRef Expression
1 cnaddablo 20942 . 2  |-  +  e.  AbelOp
2 ax-addf 8749 . . 3  |-  +  :
( CC  X.  CC )
--> CC
32fdmi 5297 . 2  |-  dom  +  =  ( CC  X.  CC )
4 ax-mulf 8750 . 2  |-  x.  :
( CC  X.  CC )
--> CC
5 mulid2 8768 . 2  |-  ( x  e.  CC  ->  (
1  x.  x )  =  x )
6 adddi 8759 . 2  |-  ( ( y  e.  CC  /\  x  e.  CC  /\  z  e.  CC )  ->  (
y  x.  ( x  +  z ) )  =  ( ( y  x.  x )  +  ( y  x.  z
) ) )
7 adddir 8763 . 2  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  CC )  ->  (
( y  +  z )  x.  x )  =  ( ( y  x.  x )  +  ( z  x.  x
) ) )
8 mulass 8758 . 2  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  x  e.  CC )  ->  (
( y  x.  z
)  x.  x )  =  ( y  x.  ( z  x.  x
) ) )
9 eqid 2256 . 2  |-  <.  +  ,  x.  >.  =  <.  +  ,  x.  >.
101, 3, 4, 5, 6, 7, 8, 9isvci 21063 1  |-  <.  +  ,  x.  >.  e.  CVec OLD
Colors of variables: wff set class
Syntax hints:    e. wcel 1621   <.cop 3584    X. cxp 4624   CCcc 8668    + caddc 8673    x. cmul 8675   CVec OLDcvc 21026
This theorem is referenced by:  cnnv  21170
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-ltxr 8805  df-sub 8972  df-neg 8973  df-grpo 20783  df-ablo 20874  df-vc 21027
  Copyright terms: Public domain W3C validator