MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex Unicode version

Theorem cnegex 8993
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cnegex  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
Distinct variable group:    x, A

Proof of Theorem cnegex
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8834 . 2  |-  ( A  e.  CC  ->  E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b ) ) )
2 ax-rnegex 8808 . . . . . . 7  |-  ( a  e.  RR  ->  E. c  e.  RR  ( a  +  c )  =  0 )
3 ax-rnegex 8808 . . . . . . 7  |-  ( b  e.  RR  ->  E. d  e.  RR  ( b  +  d )  =  0 )
42, 3anim12i 549 . . . . . 6  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. c  e.  RR  ( a  +  c )  =  0  /\  E. d  e.  RR  ( b  +  d )  =  0 ) )
5 reeanv 2707 . . . . . 6  |-  ( E. c  e.  RR  E. d  e.  RR  (
( a  +  c )  =  0  /\  ( b  +  d )  =  0 )  <-> 
( E. c  e.  RR  ( a  +  c )  =  0  /\  E. d  e.  RR  ( b  +  d )  =  0 ) )
64, 5sylibr 203 . . . . 5  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  E. c  e.  RR  E. d  e.  RR  (
( a  +  c )  =  0  /\  ( b  +  d )  =  0 ) )
7 ax-icn 8796 . . . . . . . . . . 11  |-  _i  e.  CC
87a1i 10 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  _i  e.  CC )
9 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  d  e.  RR )
109recnd 8861 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  d  e.  CC )
118, 10mulcld 8855 . . . . . . . . 9  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  d )  e.  CC )
12 simplrl 736 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  c  e.  RR )
1312recnd 8861 . . . . . . . . 9  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  c  e.  CC )
1411, 13addcld 8854 . . . . . . . 8  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( _i  x.  d )  +  c )  e.  CC )
15 simplll 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  a  e.  RR )
1615recnd 8861 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  a  e.  CC )
17 simpllr 735 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  b  e.  RR )
1817recnd 8861 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  b  e.  CC )
198, 18mulcld 8855 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  b )  e.  CC )
2016, 19, 11addassd 8857 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( a  +  ( _i  x.  b ) )  +  ( _i  x.  d
) )  =  ( a  +  ( ( _i  x.  b )  +  ( _i  x.  d ) ) ) )
218, 18, 10adddid 8859 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  ( b  +  d ) )  =  ( ( _i  x.  b
)  +  ( _i  x.  d ) ) )
22 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( b  +  d )  =  0 )
2322oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  ( b  +  d ) )  =  ( _i  x.  0 ) )
24 mul01 8991 . . . . . . . . . . . . . . . 16  |-  ( _i  e.  CC  ->  (
_i  x.  0 )  =  0 )
257, 24ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( _i  x.  0 )  =  0
2623, 25syl6eq 2331 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( _i  x.  ( b  +  d ) )  =  0 )
2721, 26eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( _i  x.  b )  +  ( _i  x.  d
) )  =  0 )
2827oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  ( ( _i  x.  b )  +  ( _i  x.  d ) ) )  =  ( a  +  0 ) )
29 addid1 8992 . . . . . . . . . . . . 13  |-  ( a  e.  CC  ->  (
a  +  0 )  =  a )
3016, 29syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  0 )  =  a )
3120, 28, 303eqtrd 2319 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( a  +  ( _i  x.  b ) )  +  ( _i  x.  d
) )  =  a )
3231oveq1d 5873 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( ( a  +  ( _i  x.  b ) )  +  ( _i  x.  d ) )  +  c )  =  ( a  +  c ) )
3316, 19addcld 8854 . . . . . . . . . . 11  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
3433, 11, 13addassd 8857 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( ( a  +  ( _i  x.  b ) )  +  ( _i  x.  d ) )  +  c )  =  ( ( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) ) )
3532, 34eqtr3d 2317 . . . . . . . . 9  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  c )  =  ( ( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) ) )
36 simprl 732 . . . . . . . . 9  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( a  +  c )  =  0 )
3735, 36eqtr3d 2317 . . . . . . . 8  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  ( ( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) )  =  0 )
38 oveq2 5866 . . . . . . . . . 10  |-  ( x  =  ( ( _i  x.  d )  +  c )  ->  (
( a  +  ( _i  x.  b ) )  +  x )  =  ( ( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) ) )
3938eqeq1d 2291 . . . . . . . . 9  |-  ( x  =  ( ( _i  x.  d )  +  c )  ->  (
( ( a  +  ( _i  x.  b
) )  +  x
)  =  0  <->  (
( a  +  ( _i  x.  b ) )  +  ( ( _i  x.  d )  +  c ) )  =  0 ) )
4039rspcev 2884 . . . . . . . 8  |-  ( ( ( ( _i  x.  d )  +  c )  e.  CC  /\  ( ( a  +  ( _i  x.  b
) )  +  ( ( _i  x.  d
)  +  c ) )  =  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  +  x
)  =  0 )
4114, 37, 40syl2anc 642 . . . . . . 7  |-  ( ( ( ( a  e.  RR  /\  b  e.  RR )  /\  (
c  e.  RR  /\  d  e.  RR )
)  /\  ( (
a  +  c )  =  0  /\  (
b  +  d )  =  0 ) )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  +  x
)  =  0 )
4241ex 423 . . . . . 6  |-  ( ( ( a  e.  RR  /\  b  e.  RR )  /\  ( c  e.  RR  /\  d  e.  RR ) )  -> 
( ( ( a  +  c )  =  0  /\  ( b  +  d )  =  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  +  x )  =  0 ) )
4342rexlimdvva 2674 . . . . 5  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( E. c  e.  RR  E. d  e.  RR  ( ( a  +  c )  =  0  /\  ( b  +  d )  =  0 )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b ) )  +  x )  =  0 ) )
446, 43mpd 14 . . . 4  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  E. x  e.  CC  ( ( a  +  ( _i  x.  b
) )  +  x
)  =  0 )
45 oveq1 5865 . . . . . 6  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( A  +  x )  =  ( ( a  +  ( _i  x.  b ) )  +  x ) )
4645eqeq1d 2291 . . . . 5  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  (
( A  +  x
)  =  0  <->  (
( a  +  ( _i  x.  b ) )  +  x )  =  0 ) )
4746rexbidv 2564 . . . 4  |-  ( A  =  ( a  +  ( _i  x.  b
) )  ->  ( E. x  e.  CC  ( A  +  x
)  =  0  <->  E. x  e.  CC  (
( a  +  ( _i  x.  b ) )  +  x )  =  0 ) )
4844, 47syl5ibrcom 213 . . 3  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( A  =  ( a  +  ( _i  x.  b ) )  ->  E. x  e.  CC  ( A  +  x
)  =  0 ) )
4948rexlimivv 2672 . 2  |-  ( E. a  e.  RR  E. b  e.  RR  A  =  ( a  +  ( _i  x.  b
) )  ->  E. x  e.  CC  ( A  +  x )  =  0 )
501, 49syl 15 1  |-  ( A  e.  CC  ->  E. x  e.  CC  ( A  +  x )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   _ici 8739    + caddc 8740    x. cmul 8742
This theorem is referenced by:  addid2  8995  addcan2  8997  0cnALT  9041  negeu  9042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872
  Copyright terms: Public domain W3C validator