HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem1 Unicode version

Theorem cnlnadjlem1 22643
Description: Lemma for cnlnadji 22652 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional  G. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1  |-  T  e. 
LinOp
cnlnadjlem.2  |-  T  e. 
ConOp
cnlnadjlem.3  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
Assertion
Ref Expression
cnlnadjlem1  |-  ( A  e.  ~H  ->  ( G `  A )  =  ( ( T `
 A )  .ih  y ) )
Distinct variable groups:    y, g, A    T, g, y
Allowed substitution hints:    G( y, g)

Proof of Theorem cnlnadjlem1
StepHypRef Expression
1 fveq2 5486 . . 3  |-  ( g  =  A  ->  ( T `  g )  =  ( T `  A ) )
21oveq1d 5835 . 2  |-  ( g  =  A  ->  (
( T `  g
)  .ih  y )  =  ( ( T `
 A )  .ih  y ) )
3 cnlnadjlem.3 . 2  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
4 ovex 5845 . 2  |-  ( ( T `  A ) 
.ih  y )  e. 
_V
52, 3, 4fvmpt 5564 1  |-  ( A  e.  ~H  ->  ( G `  A )  =  ( ( T `
 A )  .ih  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1685    e. cmpt 4078   ` cfv 5221  (class class class)co 5820   ~Hchil 21495    .ih csp 21498   ConOpccop 21522   LinOpclo 21523
This theorem is referenced by:  cnlnadjlem2  22644  cnlnadjlem3  22645  cnlnadjlem5  22647
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fv 5229  df-ov 5823
  Copyright terms: Public domain W3C validator