HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem1 Unicode version

Theorem cnlnadjlem1 22649
Description: Lemma for cnlnadji 22658 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional  G. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1  |-  T  e. 
LinOp
cnlnadjlem.2  |-  T  e. 
ConOp
cnlnadjlem.3  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
Assertion
Ref Expression
cnlnadjlem1  |-  ( A  e.  ~H  ->  ( G `  A )  =  ( ( T `
 A )  .ih  y ) )
Distinct variable groups:    y, g, A    T, g, y
Allowed substitution hints:    G( y, g)

Proof of Theorem cnlnadjlem1
StepHypRef Expression
1 fveq2 5527 . . 3  |-  ( g  =  A  ->  ( T `  g )  =  ( T `  A ) )
21oveq1d 5875 . 2  |-  ( g  =  A  ->  (
( T `  g
)  .ih  y )  =  ( ( T `
 A )  .ih  y ) )
3 cnlnadjlem.3 . 2  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
4 ovex 5885 . 2  |-  ( ( T `  A ) 
.ih  y )  e. 
_V
52, 3, 4fvmpt 5604 1  |-  ( A  e.  ~H  ->  ( G `  A )  =  ( ( T `
 A )  .ih  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1625    e. wcel 1686    e. cmpt 4079   ` cfv 5257  (class class class)co 5860   ~Hchil 21501    .ih csp 21504   ConOpccop 21528   LinOpclo 21529
This theorem is referenced by:  cnlnadjlem2  22650  cnlnadjlem3  22651  cnlnadjlem5  22653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-iota 5221  df-fun 5259  df-fv 5265  df-ov 5863
  Copyright terms: Public domain W3C validator