MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt12f Unicode version

Theorem cnmpt12f 17308
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
cnmpt12f.f  |-  ( ph  ->  F  e.  ( ( K  tX  L )  Cn  M ) )
Assertion
Ref Expression
cnmpt12f  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
Distinct variable groups:    x, F    ph, x    x, J    x, M    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 5781 . . 3  |-  ( A F B )  =  ( F `  <. A ,  B >. )
21mpteq2i 4063 . 2  |-  ( x  e.  X  |->  ( A F B ) )  =  ( x  e.  X  |->  ( F `  <. A ,  B >. ) )
3 cnmptid.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
4 cnmpt11.a . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
5 cnmpt1t.b . . . 4  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
63, 4, 5cnmpt1t 17307 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
7 cnmpt12f.f . . 3  |-  ( ph  ->  F  e.  ( ( K  tX  L )  Cn  M ) )
83, 6, 7cnmpt11f 17306 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( F `  <. A ,  B >. )
)  e.  ( J  Cn  M ) )
92, 8syl5eqel 2340 1  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1621   <.cop 3603    e. cmpt 4037   ` cfv 4659  (class class class)co 5778  TopOnctopon 16580    Cn ccn 16902    tX ctx 17203
This theorem is referenced by:  cnmpt12  17309  cnmpt1plusg  17718  istgp2  17722  clsnsg  17740  tgpt0  17749  cnmpt1vsca  17824  cnmpt1ds  18295  fsumcn  18322  expcn  18324  divccn  18325  cncfmpt2f  18366  cdivcncf  18368  iirevcn  18376  iihalf1cn  18378  iihalf2cn  18380  icchmeo  18387  evth  18405  evth2  18406  pcoass  18470  cnmpt1ip  18622  dvcnvlem  19271  plycn  19590  psercn2  19747  atansopn  20176  efrlim  20212  ipasslem7  21360  occllem  21828  hmopidmchi  22677  cvxpcon  23131  cvmlift2lem2  23193  cvmlift2lem3  23194  cvmliftphtlem  23206  sinccvglem  23363
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-map 6728  df-topgen 13292  df-top 16584  df-bases 16586  df-topon 16587  df-cn 16905  df-tx 17205
  Copyright terms: Public domain W3C validator