MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnv Unicode version

Theorem cnnv 21075
Description: The set of complex numbers is a normed complex vector space. The vector operation is  +, the scalar product is  x., and the norm function is  abs. (Contributed by Steve Rodriguez, 3-Dec-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnnv.6  |-  U  = 
<. <.  +  ,  x.  >. ,  abs >.
Assertion
Ref Expression
cnnv  |-  U  e.  NrmCVec

Proof of Theorem cnnv
StepHypRef Expression
1 cnaddablo 20847 . . . 4  |-  +  e.  AbelOp
2 ablogrpo 20781 . . . 4  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
31, 2ax-mp 10 . . 3  |-  +  e.  GrpOp
4 ax-addf 8696 . . . 4  |-  +  :
( CC  X.  CC )
--> CC
54fdmi 5251 . . 3  |-  dom  +  =  ( CC  X.  CC )
63, 5grporn 20709 . 2  |-  CC  =  ran  +
7 cnid 20848 . 2  |-  0  =  (GId `  +  )
8 cncvc 20969 . 2  |-  <.  +  ,  x.  >.  e.  CVec OLD
9 absf 11698 . 2  |-  abs : CC
--> RR
10 abs00 11651 . . 3  |-  ( x  e.  CC  ->  (
( abs `  x
)  =  0  <->  x  =  0 ) )
1110biimpa 472 . 2  |-  ( ( x  e.  CC  /\  ( abs `  x )  =  0 )  ->  x  =  0 )
12 absmul 11656 . 2  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( abs `  (
y  x.  x ) )  =  ( ( abs `  y )  x.  ( abs `  x
) ) )
13 abstri 11691 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  +  y ) )  <_  ( ( abs `  x )  +  ( abs `  y
) ) )
14 cnnv.6 . 2  |-  U  = 
<. <.  +  ,  x.  >. ,  abs >.
156, 7, 8, 9, 11, 12, 13, 14isnvi 20999 1  |-  U  e.  NrmCVec
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   <.cop 3547    X. cxp 4578   ` cfv 4592   CCcc 8615   0cc0 8617    + caddc 8620    x. cmul 8622   abscabs 11596   GrpOpcgr 20683   AbelOpcablo 20778   NrmCVeccnv 20970
This theorem is referenced by:  cnnvdemo  21078  cnnvm  21081  elimnvu  21083  cnims  21096  cncph  21227  ipblnfi  21264  cnbn  21278  htthlem  21327
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-grpo 20688  df-gid 20689  df-ablo 20779  df-vc 20932  df-nv 20978
  Copyright terms: Public domain W3C validator