MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpco Unicode version

Theorem cnpco 16828
Description: The composition of two continuous functions at point  P is a continuous function at point 
P. Proposition of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cnpco  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F )  e.  ( ( J  CnP  L ) `  P ) )

Proof of Theorem cnpco
StepHypRef Expression
1 cnptop1 16804 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
21adantr 453 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  J  e.  Top )
3 cnptop2 16805 . . . 4  |-  ( G  e.  ( ( K  CnP  L ) `  ( F `  P ) )  ->  L  e.  Top )
43adantl 454 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  L  e.  Top )
5 eqid 2253 . . . . 5  |-  U. J  =  U. J
65cnprcl 16807 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  U. J )
76adantr 453 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  P  e.  U. J )
82, 4, 73jca 1137 . 2  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( J  e.  Top  /\  L  e.  Top  /\  P  e. 
U. J ) )
9 eqid 2253 . . . . . 6  |-  U. K  =  U. K
10 eqid 2253 . . . . . 6  |-  U. L  =  U. L
119, 10cnpf 16809 . . . . 5  |-  ( G  e.  ( ( K  CnP  L ) `  ( F `  P ) )  ->  G : U. K --> U. L )
1211adantl 454 . . . 4  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  G : U. K --> U. L
)
135, 9cnpf 16809 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  F : U. J --> U. K
)
1413adantr 453 . . . 4  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  F : U. J --> U. K
)
15 fco 5255 . . . 4  |-  ( ( G : U. K --> U. L  /\  F : U. J --> U. K )  -> 
( G  o.  F
) : U. J --> U. L )
1612, 14, 15syl2anc 645 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F ) : U. J --> U. L
)
17 simplr 734 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )
18 simprl 735 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
z  e.  L )
19 fvco3 5448 . . . . . . . . . 10  |-  ( ( F : U. J --> U. K  /\  P  e. 
U. J )  -> 
( ( G  o.  F ) `  P
)  =  ( G `
 ( F `  P ) ) )
2014, 7, 19syl2anc 645 . . . . . . . . 9  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  (
( G  o.  F
) `  P )  =  ( G `  ( F `  P ) ) )
2120adantr 453 . . . . . . . 8  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( ( G  o.  F ) `  P
)  =  ( G `
 ( F `  P ) ) )
22 simprr 736 . . . . . . . 8  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( ( G  o.  F ) `  P
)  e.  z )
2321, 22eqeltrrd 2328 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( G `  ( F `  P )
)  e.  z )
24 cnpimaex 16818 . . . . . . 7  |-  ( ( G  e.  ( ( K  CnP  L ) `
 ( F `  P ) )  /\  z  e.  L  /\  ( G `  ( F `
 P ) )  e.  z )  ->  E. y  e.  K  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) )
2517, 18, 23, 24syl3anc 1187 . . . . . 6  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  E. y  e.  K  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) )
26 simplll 737 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
27 simprl 735 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
y  e.  K )
28 simprrl 743 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( F `  P
)  e.  y )
29 cnpimaex 16818 . . . . . . . . . 10  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K  /\  ( F `  P )  e.  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
3026, 27, 28, 29syl3anc 1187 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
31 imaco 5084 . . . . . . . . . . . . 13  |-  ( ( G  o.  F )
" x )  =  ( G " ( F " x ) )
32 imass2 4956 . . . . . . . . . . . . 13  |-  ( ( F " x ) 
C_  y  ->  ( G " ( F "
x ) )  C_  ( G " y ) )
3331, 32syl5eqss 3143 . . . . . . . . . . . 12  |-  ( ( F " x ) 
C_  y  ->  (
( G  o.  F
) " x ) 
C_  ( G "
y ) )
34 simprrr 744 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( G " y
)  C_  z )
35 sstr2 3107 . . . . . . . . . . . . 13  |-  ( ( ( G  o.  F
) " x ) 
C_  ( G "
y )  ->  (
( G " y
)  C_  z  ->  ( ( G  o.  F
) " x ) 
C_  z ) )
3634, 35syl5com 28 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( ( G  o.  F ) "
x )  C_  ( G " y )  -> 
( ( G  o.  F ) " x
)  C_  z )
)
3733, 36syl5 30 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( F "
x )  C_  y  ->  ( ( G  o.  F ) " x
)  C_  z )
)
3837anim2d 550 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( P  e.  x  /\  ( F
" x )  C_  y )  ->  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
) )
3938reximdv 2616 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4030, 39mpd 16 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
)
4140expr 601 . . . . . . 7  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  y  e.  K )  ->  ( ( ( F `
 P )  e.  y  /\  ( G
" y )  C_  z )  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4241rexlimdva 2629 . . . . . 6  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( E. y  e.  K  ( ( F `
 P )  e.  y  /\  ( G
" y )  C_  z )  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4325, 42mpd 16 . . . . 5  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
)
4443expr 601 . . . 4  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  z  e.  L
)  ->  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4544ralrimiva 2588 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  A. z  e.  L  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4616, 45jca 520 . 2  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  (
( G  o.  F
) : U. J --> U. L  /\  A. z  e.  L  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) ) )
475, 10iscnp2 16801 . 2  |-  ( ( G  o.  F )  e.  ( ( J  CnP  L ) `  P )  <->  ( ( J  e.  Top  /\  L  e.  Top  /\  P  e. 
U. J )  /\  ( ( G  o.  F ) : U. J
--> U. L  /\  A. z  e.  L  (
( ( G  o.  F ) `  P
)  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
) ) ) )
488, 46, 47sylanbrc 648 1  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F )  e.  ( ( J  CnP  L ) `  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510    C_ wss 3078   U.cuni 3727   "cima 4583    o. ccom 4584   -->wf 4588   ` cfv 4592  (class class class)co 5710   Topctop 16463    CnP ccnp 16787
This theorem is referenced by:  limccnp  19073  limccnp2  19074  efrlim  20096
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-map 6660  df-top 16468  df-topon 16471  df-cnp 16790
  Copyright terms: Public domain W3C validator