MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpco Unicode version

Theorem cnpco 17314
Description: The composition of two continuous functions at point  P is a continuous function at point 
P. Proposition of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cnpco  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F )  e.  ( ( J  CnP  L ) `  P ) )

Proof of Theorem cnpco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 17289 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
21adantr 452 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  J  e.  Top )
3 cnptop2 17290 . . . 4  |-  ( G  e.  ( ( K  CnP  L ) `  ( F `  P ) )  ->  L  e.  Top )
43adantl 453 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  L  e.  Top )
5 eqid 2430 . . . . 5  |-  U. J  =  U. J
65cnprcl 17292 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  U. J )
76adantr 452 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  P  e.  U. J )
82, 4, 73jca 1134 . 2  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( J  e.  Top  /\  L  e.  Top  /\  P  e. 
U. J ) )
9 eqid 2430 . . . . . 6  |-  U. K  =  U. K
10 eqid 2430 . . . . . 6  |-  U. L  =  U. L
119, 10cnpf 17294 . . . . 5  |-  ( G  e.  ( ( K  CnP  L ) `  ( F `  P ) )  ->  G : U. K --> U. L )
1211adantl 453 . . . 4  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  G : U. K --> U. L
)
135, 9cnpf 17294 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  F : U. J --> U. K
)
1413adantr 452 . . . 4  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  F : U. J --> U. K
)
15 fco 5586 . . . 4  |-  ( ( G : U. K --> U. L  /\  F : U. J --> U. K )  -> 
( G  o.  F
) : U. J --> U. L )
1612, 14, 15syl2anc 643 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F ) : U. J --> U. L
)
17 simplr 732 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )
18 simprl 733 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
z  e.  L )
19 fvco3 5786 . . . . . . . . . 10  |-  ( ( F : U. J --> U. K  /\  P  e. 
U. J )  -> 
( ( G  o.  F ) `  P
)  =  ( G `
 ( F `  P ) ) )
2014, 7, 19syl2anc 643 . . . . . . . . 9  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  (
( G  o.  F
) `  P )  =  ( G `  ( F `  P ) ) )
2120adantr 452 . . . . . . . 8  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( ( G  o.  F ) `  P
)  =  ( G `
 ( F `  P ) ) )
22 simprr 734 . . . . . . . 8  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( ( G  o.  F ) `  P
)  e.  z )
2321, 22eqeltrrd 2505 . . . . . . 7  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  -> 
( G `  ( F `  P )
)  e.  z )
24 cnpimaex 17303 . . . . . . 7  |-  ( ( G  e.  ( ( K  CnP  L ) `
 ( F `  P ) )  /\  z  e.  L  /\  ( G `  ( F `
 P ) )  e.  z )  ->  E. y  e.  K  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) )
2517, 18, 23, 24syl3anc 1184 . . . . . 6  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  E. y  e.  K  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) )
26 simplll 735 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
27 simprl 733 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
y  e.  K )
28 simprrl 741 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( F `  P
)  e.  y )
29 cnpimaex 17303 . . . . . . . 8  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K  /\  ( F `  P )  e.  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
3026, 27, 28, 29syl3anc 1184 . . . . . . 7  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
31 imaco 5361 . . . . . . . . . . 11  |-  ( ( G  o.  F )
" x )  =  ( G " ( F " x ) )
32 imass2 5226 . . . . . . . . . . 11  |-  ( ( F " x ) 
C_  y  ->  ( G " ( F "
x ) )  C_  ( G " y ) )
3331, 32syl5eqss 3379 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  y  ->  (
( G  o.  F
) " x ) 
C_  ( G "
y ) )
34 simprrr 742 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( G " y
)  C_  z )
35 sstr2 3342 . . . . . . . . . . 11  |-  ( ( ( G  o.  F
) " x ) 
C_  ( G "
y )  ->  (
( G " y
)  C_  z  ->  ( ( G  o.  F
) " x ) 
C_  z ) )
3634, 35syl5com 28 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( ( G  o.  F ) "
x )  C_  ( G " y )  -> 
( ( G  o.  F ) " x
)  C_  z )
)
3733, 36syl5 30 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( F "
x )  C_  y  ->  ( ( G  o.  F ) " x
)  C_  z )
)
3837anim2d 549 . . . . . . . 8  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( ( P  e.  x  /\  ( F
" x )  C_  y )  ->  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
) )
3938reximdv 2804 . . . . . . 7  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4030, 39mpd 15 . . . . . 6  |-  ( ( ( ( F  e.  ( ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  /\  ( y  e.  K  /\  ( ( F `  P )  e.  y  /\  ( G "
y )  C_  z
) ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
)
4125, 40rexlimddv 2821 . . . . 5  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  ( z  e.  L  /\  ( ( G  o.  F ) `
 P )  e.  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
)
4241expr 599 . . . 4  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  P )  /\  G  e.  (
( K  CnP  L
) `  ( F `  P ) ) )  /\  z  e.  L
)  ->  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4342ralrimiva 2776 . . 3  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  A. z  e.  L  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) )
4416, 43jca 519 . 2  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  (
( G  o.  F
) : U. J --> U. L  /\  A. z  e.  L  ( (
( G  o.  F
) `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  (
( G  o.  F
) " x ) 
C_  z ) ) ) )
455, 10iscnp2 17286 . 2  |-  ( ( G  o.  F )  e.  ( ( J  CnP  L ) `  P )  <->  ( ( J  e.  Top  /\  L  e.  Top  /\  P  e. 
U. J )  /\  ( ( G  o.  F ) : U. J
--> U. L  /\  A. z  e.  L  (
( ( G  o.  F ) `  P
)  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( ( G  o.  F ) " x
)  C_  z )
) ) ) )
468, 44, 45sylanbrc 646 1  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) )  ->  ( G  o.  F )  e.  ( ( J  CnP  L ) `  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2692   E.wrex 2693    C_ wss 3307   U.cuni 4002   "cima 4867    o. ccom 4868   -->wf 5436   ` cfv 5440  (class class class)co 6067   Topctop 16941    CnP ccnp 17272
This theorem is referenced by:  limccnp  19761  limccnp2  19762  efrlim  20791
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-map 7006  df-top 16946  df-topon 16949  df-cnp 17275
  Copyright terms: Public domain W3C validator