MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflf2 Unicode version

Theorem cnpflf2 17690
Description:  F is continous at point  A iff a limit of  F when  x tends to  A is  ( F `  A ). Proposition 9 of [BourbakiTop1] p. TG I.50. (Contributed by FL, 29-May-2011.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
cnpflf2.3  |-  L  =  ( ( nei `  J
) `  { A } )
Assertion
Ref Expression
cnpflf2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) ) ) )
Dummy variables  u  v  z are mutually distinct and distinct from all other variables.

Proof of Theorem cnpflf2
StepHypRef Expression
1 cnpf2 16975 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  A )
)  ->  F : X
--> Y )
213expa 1153 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
323adantl3 1115 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
4 simpl1 960 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  J  e.  (TopOn `  X ) )
5 simpl3 962 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  X )
6 neiflim 17664 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  ( J  fLim  (
( nei `  J
) `  { A } ) ) )
7 cnpflf2.3 . . . . . . 7  |-  L  =  ( ( nei `  J
) `  { A } )
87oveq2i 5831 . . . . . 6  |-  ( J 
fLim  L )  =  ( J  fLim  ( ( nei `  J ) `  { A } ) )
96, 8syl6eleqr 2376 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  A  e.  ( J  fLim  L
) )
104, 5, 9syl2anc 644 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  ( J  fLim  L ) )
11 simpr 449 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) )
12 cnpflfi 17689 . . . 4  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) )
1310, 11, 12syl2anc 644 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) )
143, 13jca 520 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  L ) `  F ) ) )
15 simpl1 960 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  J  e.  (TopOn `  X )
)
16 topontop 16659 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1715, 16syl 17 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  J  e.  Top )
18 simpl3 962 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  A  e.  X )
19 toponuni 16660 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2015, 19syl 17 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  X  =  U. J )
2118, 20eleqtrd 2361 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  A  e.  U. J )
227eleq2i 2349 . . . . . . . . . . . 12  |-  ( z  e.  L  <->  z  e.  ( ( nei `  J
) `  { A } ) )
23 eqid 2285 . . . . . . . . . . . . 13  |-  U. J  =  U. J
2423isneip 16837 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  A  e.  U. J )  ->  ( z  e.  ( ( nei `  J
) `  { A } )  <->  ( z  C_ 
U. J  /\  E. v  e.  J  ( A  e.  v  /\  v  C_  z ) ) ) )
2522, 24syl5bb 250 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  A  e.  U. J )  ->  ( z  e.  L  <->  ( z  C_  U. J  /\  E. v  e.  J  ( A  e.  v  /\  v  C_  z ) ) ) )
2617, 21, 25syl2anc 644 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
z  e.  L  <->  ( z  C_ 
U. J  /\  E. v  e.  J  ( A  e.  v  /\  v  C_  z ) ) ) )
27 imass2 5049 . . . . . . . . . . . . . . 15  |-  ( v 
C_  z  ->  ( F " v )  C_  ( F " z ) )
28 sstr2 3188 . . . . . . . . . . . . . . . 16  |-  ( ( F " v ) 
C_  ( F "
z )  ->  (
( F " z
)  C_  u  ->  ( F " v ) 
C_  u ) )
2928com12 29 . . . . . . . . . . . . . . 15  |-  ( ( F " z ) 
C_  u  ->  (
( F " v
)  C_  ( F " z )  ->  ( F " v )  C_  u ) )
3027, 29syl5 30 . . . . . . . . . . . . . 14  |-  ( ( F " z ) 
C_  u  ->  (
v  C_  z  ->  ( F " v ) 
C_  u ) )
3130anim2d 550 . . . . . . . . . . . . 13  |-  ( ( F " z ) 
C_  u  ->  (
( A  e.  v  /\  v  C_  z
)  ->  ( A  e.  v  /\  ( F " v )  C_  u ) ) )
3231reximdv 2656 . . . . . . . . . . . 12  |-  ( ( F " z ) 
C_  u  ->  ( E. v  e.  J  ( A  e.  v  /\  v  C_  z )  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) )
3332com12 29 . . . . . . . . . . 11  |-  ( E. v  e.  J  ( A  e.  v  /\  v  C_  z )  -> 
( ( F "
z )  C_  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) )
3433adantl 454 . . . . . . . . . 10  |-  ( ( z  C_  U. J  /\  E. v  e.  J  ( A  e.  v  /\  v  C_  z ) )  ->  ( ( F
" z )  C_  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) )
3526, 34syl6bi 221 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
z  e.  L  -> 
( ( F "
z )  C_  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) ) )
3635rexlimdv 2668 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( E. z  e.  L  ( F " z ) 
C_  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v )  C_  u ) ) )
3736imim2d 50 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z ) 
C_  u )  -> 
( ( F `  A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) ) )
3837ralimdv 2624 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z ) 
C_  u )  ->  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) ) )
39 simpr 449 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  F : X --> Y )
4038, 39jctild 529 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z ) 
C_  u )  -> 
( F : X --> Y  /\  A. u  e.  K  ( ( F `
 A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
4140adantld 455 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( ( F `  A )  e.  Y  /\  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z ) 
C_  u ) )  ->  ( F : X
--> Y  /\  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
42 simpl2 961 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  K  e.  (TopOn `  Y )
)
4318snssd 3762 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  { A }  C_  X )
44 snnzg 3745 . . . . . . . 8  |-  ( A  e.  X  ->  { A }  =/=  (/) )
4518, 44syl 17 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  { A }  =/=  (/) )
46 neifil 17570 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  { A }  C_  X  /\  { A }  =/=  (/) )  -> 
( ( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
4715, 43, 45, 46syl3anc 1184 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( nei `  J
) `  { A } )  e.  ( Fil `  X ) )
487, 47syl5eqel 2369 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  L  e.  ( Fil `  X
) )
49 isflf 17683 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  L  e.  ( Fil `  X
)  /\  F : X
--> Y )  ->  (
( F `  A
)  e.  ( ( K  fLimf  L ) `  F )  <->  ( ( F `  A )  e.  Y  /\  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z )  C_  u
) ) ) )
5042, 48, 39, 49syl3anc 1184 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( F `  A
)  e.  ( ( K  fLimf  L ) `  F )  <->  ( ( F `  A )  e.  Y  /\  A. u  e.  K  ( ( F `  A )  e.  u  ->  E. z  e.  L  ( F " z )  C_  u
) ) ) )
51 iscnp 16962 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. u  e.  K  ( ( F `
 A )  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
5251adantr 453 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <->  ( F : X --> Y  /\  A. u  e.  K  (
( F `  A
)  e.  u  ->  E. v  e.  J  ( A  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
5341, 50, 523imtr4d 261 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  (
( F `  A
)  e.  ( ( K  fLimf  L ) `  F )  ->  F  e.  ( ( J  CnP  K ) `  A ) ) )
5453impr 604 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  ( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  L ) `  F ) ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) )
5514, 54impbida 807 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2448   A.wral 2545   E.wrex 2546    C_ wss 3154   (/)c0 3457   {csn 3642   U.cuni 3829   "cima 4692   -->wf 5218   ` cfv 5222  (class class class)co 5820   Topctop 16626  TopOnctopon 16627   neicnei 16829    CnP ccnp 16950   Filcfil 17535    fLim cflim 17624    fLimf cflf 17625
This theorem is referenced by:  cnpflf  17691  conttnf2  24962
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-map 6770  df-top 16631  df-topon 16634  df-ntr 16752  df-nei 16830  df-cnp 16953  df-fbas 17515  df-fg 17516  df-fil 17536  df-fm 17628  df-flim 17629  df-flf 17630
  Copyright terms: Public domain W3C validator