MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnplimc Structured version   Unicode version

Theorem cnplimc 19812
Description: A function is continuous at  B iff its limit at  B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
cnplimc.k  |-  K  =  ( TopOpen ` fld )
cnplimc.j  |-  J  =  ( Kt  A )
Assertion
Ref Expression
cnplimc  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) ) )

Proof of Theorem cnplimc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnplimc.j . . . . 5  |-  J  =  ( Kt  A )
2 cnplimc.k . . . . . . 7  |-  K  =  ( TopOpen ` fld )
32cnfldtopon 18855 . . . . . 6  |-  K  e.  (TopOn `  CC )
4 simpl 445 . . . . . 6  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  A  C_  CC )
5 resttopon 17263 . . . . . 6  |-  ( ( K  e.  (TopOn `  CC )  /\  A  C_  CC )  ->  ( Kt  A )  e.  (TopOn `  A ) )
63, 4, 5sylancr 646 . . . . 5  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( Kt  A )  e.  (TopOn `  A ) )
71, 6syl5eqel 2527 . . . 4  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  J  e.  (TopOn `  A )
)
8 cnpf2 17352 . . . . 5  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )  /\  F  e.  (
( J  CnP  K
) `  B )
)  ->  F : A
--> CC )
983expia 1156 . . . 4  |-  ( ( J  e.  (TopOn `  A )  /\  K  e.  (TopOn `  CC )
)  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
107, 3, 9sylancl 645 . . 3  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  ->  F : A --> CC ) )
1110pm4.71rd 618 . 2  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  F  e.  ( ( J  CnP  K ) `  B ) ) ) )
12 simpr 449 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  F : A
--> CC )
13 simplr 733 . . . . . . . . . 10  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  A )
1413snssd 3972 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  { B }  C_  A )
15 ssequn2 3509 . . . . . . . . 9  |-  ( { B }  C_  A  <->  ( A  u.  { B } )  =  A )
1614, 15sylib 190 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( A  u.  { B }
)  =  A )
1716feq2d 5616 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F : ( A  u.  { B } ) --> CC  <->  F : A --> CC ) )
1812, 17mpbird 225 . . . . . 6  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  F :
( A  u.  { B } ) --> CC )
1918feqmptd 5815 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  F  =  ( x  e.  ( A  u.  { B } )  |->  ( F `
 x ) ) )
2016oveq2d 6133 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( Kt  ( A  u.  { B } ) )  =  ( Kt  A ) )
2120, 1syl6reqr 2494 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  J  =  ( Kt  ( A  u.  { B } ) ) )
2221oveq1d 6132 . . . . . 6  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( J  CnP  K )  =  ( ( Kt  ( A  u.  { B }
) )  CnP  K
) )
2322fveq1d 5765 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( ( J  CnP  K ) `
 B )  =  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) )
2419, 23eleq12d 2511 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( x  e.  ( A  u.  { B } )  |->  ( F `
 x ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
25 eqid 2443 . . . . 5  |-  ( Kt  ( A  u.  { B } ) )  =  ( Kt  ( A  u.  { B } ) )
26 ifid 3798 . . . . . . 7  |-  if ( x  =  B , 
( F `  x
) ,  ( F `
 x ) )  =  ( F `  x )
27 fveq2 5763 . . . . . . . . 9  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
2827adantl 454 . . . . . . . 8  |-  ( ( x  e.  ( A  u.  { B }
)  /\  x  =  B )  ->  ( F `  x )  =  ( F `  B ) )
2928ifeq1da 3792 . . . . . . 7  |-  ( x  e.  ( A  u.  { B } )  ->  if ( x  =  B ,  ( F `  x ) ,  ( F `  x ) )  =  if ( x  =  B , 
( F `  B
) ,  ( F `
 x ) ) )
3026, 29syl5eqr 2489 . . . . . 6  |-  ( x  e.  ( A  u.  { B } )  -> 
( F `  x
)  =  if ( x  =  B , 
( F `  B
) ,  ( F `
 x ) ) )
3130mpteq2ia 4322 . . . . 5  |-  ( x  e.  ( A  u.  { B } )  |->  ( F `  x ) )  =  ( x  e.  ( A  u.  { B } )  |->  if ( x  =  B ,  ( F `  B ) ,  ( F `  x ) ) )
32 simpll 732 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  A  C_  CC )
3332, 13sseldd 3338 . . . . 5  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  B  e.  CC )
3425, 2, 31, 12, 32, 33ellimc 19798 . . . 4  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( ( F `  B )  e.  ( F lim CC  B )  <->  ( x  e.  ( A  u.  { B } )  |->  ( F `
 x ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
3524, 34bitr4d 249 . . 3  |-  ( ( ( A  C_  CC  /\  B  e.  A )  /\  F : A --> CC )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F `  B )  e.  ( F lim CC  B ) ) )
3635pm5.32da 624 . 2  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  (
( F : A --> CC  /\  F  e.  ( ( J  CnP  K
) `  B )
)  <->  ( F : A
--> CC  /\  ( F `
 B )  e.  ( F lim CC  B
) ) ) )
3711, 36bitrd 246 1  |-  ( ( A  C_  CC  /\  B  e.  A )  ->  ( F  e.  ( ( J  CnP  K ) `  B )  <->  ( F : A --> CC  /\  ( F `  B )  e.  ( F lim CC  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1654    e. wcel 1728    u. cun 3307    C_ wss 3309   ifcif 3767   {csn 3843    e. cmpt 4297   -->wf 5485   ` cfv 5489  (class class class)co 6117   CCcc 9026   ↾t crest 13686   TopOpenctopn 13687  ℂfldccnfld 16741  TopOnctopon 16997    CnP ccnp 17327   lim CC climc 19787
This theorem is referenced by:  cnlimc  19813  dvcnp2  19844  dvmulbr  19863  dvcobr  19870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-cnex 9084  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105  ax-pre-sup 9106
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rmo 2720  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-int 4080  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-riota 6585  df-recs 6669  df-rdg 6704  df-1o 6760  df-oadd 6764  df-er 6941  df-map 7056  df-pm 7057  df-en 7146  df-dom 7147  df-sdom 7148  df-fin 7149  df-fi 7452  df-sup 7482  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-div 9716  df-nn 10039  df-2 10096  df-3 10097  df-4 10098  df-5 10099  df-6 10100  df-7 10101  df-8 10102  df-9 10103  df-10 10104  df-n0 10260  df-z 10321  df-dec 10421  df-uz 10527  df-q 10613  df-rp 10651  df-xneg 10748  df-xadd 10749  df-xmul 10750  df-fz 11082  df-seq 11362  df-exp 11421  df-cj 11942  df-re 11943  df-im 11944  df-sqr 12078  df-abs 12079  df-struct 13509  df-ndx 13510  df-slot 13511  df-base 13512  df-plusg 13580  df-mulr 13581  df-starv 13582  df-tset 13586  df-ple 13587  df-ds 13589  df-unif 13590  df-rest 13688  df-topn 13689  df-topgen 13705  df-psmet 16732  df-xmet 16733  df-met 16734  df-bl 16735  df-mopn 16736  df-cnfld 16742  df-top 17001  df-bases 17003  df-topon 17004  df-topsp 17005  df-cnp 17330  df-xms 18388  df-ms 18389  df-limc 19791
  Copyright terms: Public domain W3C validator