MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpnei Structured version   Unicode version

Theorem cnpnei 17366
Description: A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009.)
Hypotheses
Ref Expression
cnpnei.1  |-  X  = 
U. J
cnpnei.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnpnei  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <->  A. y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } ) ) )
Distinct variable groups:    y, A    y, F    y, J    y, K    y, X    y, Y

Proof of Theorem cnpnei
Dummy variables  g 
o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5259 . . . . . . . 8  |-  ( `' F " y ) 
C_  dom  F
2 fdm 5630 . . . . . . . 8  |-  ( F : X --> Y  ->  dom  F  =  X )
31, 2syl5sseq 3385 . . . . . . 7  |-  ( F : X --> Y  -> 
( `' F "
y )  C_  X
)
433ad2ant3 981 . . . . . 6  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( `' F "
y )  C_  X
)
54ad2antrr 708 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  ->  ( `' F " y )  C_  X
)
6 neii2 17210 . . . . . . . 8  |-  ( ( K  e.  Top  /\  y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) )  ->  E. g  e.  K  ( {
( F `  A
) }  C_  g  /\  g  C_  y ) )
763ad2antl2 1121 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) )  ->  E. g  e.  K  ( { ( F `  A ) }  C_  g  /\  g  C_  y
) )
87ad2ant2rl 731 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  ->  E. g  e.  K  ( { ( F `  A ) }  C_  g  /\  g  C_  y
) )
9 simpll 732 . . . . . . . . . 10  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) )  /\  ( g  e.  K  /\  ( { ( F `
 A ) } 
C_  g  /\  g  C_  y ) ) )  ->  F  e.  ( ( J  CnP  K
) `  A )
)
10 simprl 734 . . . . . . . . . 10  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) )  /\  ( g  e.  K  /\  ( { ( F `
 A ) } 
C_  g  /\  g  C_  y ) ) )  ->  g  e.  K
)
11 fvex 5773 . . . . . . . . . . . . . 14  |-  ( F `
 A )  e. 
_V
1211snss 3955 . . . . . . . . . . . . 13  |-  ( ( F `  A )  e.  g  <->  { ( F `  A ) }  C_  g )
1312biimpri 199 . . . . . . . . . . . 12  |-  ( { ( F `  A
) }  C_  g  ->  ( F `  A
)  e.  g )
1413adantr 453 . . . . . . . . . . 11  |-  ( ( { ( F `  A ) }  C_  g  /\  g  C_  y
)  ->  ( F `  A )  e.  g )
1514ad2antll 711 . . . . . . . . . 10  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) )  /\  ( g  e.  K  /\  ( { ( F `
 A ) } 
C_  g  /\  g  C_  y ) ) )  ->  ( F `  A )  e.  g )
169, 10, 153jca 1135 . . . . . . . . 9  |-  ( ( ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) )  /\  ( g  e.  K  /\  ( { ( F `
 A ) } 
C_  g  /\  g  C_  y ) ) )  ->  ( F  e.  ( ( J  CnP  K ) `  A )  /\  g  e.  K  /\  ( F `  A
)  e.  g ) )
1716adantll 696 . . . . . . . 8  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  ->  ( F  e.  ( ( J  CnP  K ) `  A )  /\  g  e.  K  /\  ( F `  A )  e.  g ) )
18 cnpimaex 17358 . . . . . . . 8  |-  ( ( F  e.  ( ( J  CnP  K ) `
 A )  /\  g  e.  K  /\  ( F `  A )  e.  g )  ->  E. o  e.  J  ( A  e.  o  /\  ( F " o
)  C_  g )
)
1917, 18syl 16 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  ->  E. o  e.  J  ( A  e.  o  /\  ( F " o )  C_  g ) )
20 sstr2 3344 . . . . . . . . . . . . 13  |-  ( ( F " o ) 
C_  g  ->  (
g  C_  y  ->  ( F " o ) 
C_  y ) )
2120com12 30 . . . . . . . . . . . 12  |-  ( g 
C_  y  ->  (
( F " o
)  C_  g  ->  ( F " o ) 
C_  y ) )
2221ad2antll 711 . . . . . . . . . . 11  |-  ( ( g  e.  K  /\  ( { ( F `  A ) }  C_  g  /\  g  C_  y
) )  ->  (
( F " o
)  C_  g  ->  ( F " o ) 
C_  y ) )
2322ad2antlr 709 . . . . . . . . . 10  |-  ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  /\  o  e.  J )  ->  (
( F " o
)  C_  g  ->  ( F " o ) 
C_  y ) )
24 ffun 5628 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  Fun  F )
25243ad2ant3 981 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  ->  Fun  F )
2625ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  ->  Fun  F )
2726ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  /\  o  e.  J )  ->  Fun  F )
28 cnpnei.1 . . . . . . . . . . . . . . . . . 18  |-  X  = 
U. J
2928eltopss 17018 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  o  C_  X )
3029adantlr 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  F : X --> Y )  /\  o  e.  J
)  ->  o  C_  X )
312sseq2d 3365 . . . . . . . . . . . . . . . . 17  |-  ( F : X --> Y  -> 
( o  C_  dom  F  <-> 
o  C_  X )
)
3231ad2antlr 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  F : X --> Y )  /\  o  e.  J
)  ->  ( o  C_ 
dom  F  <->  o  C_  X
) )
3330, 32mpbird 225 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  F : X --> Y )  /\  o  e.  J
)  ->  o  C_  dom  F )
34333adantl2 1115 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  o  e.  J
)  ->  o  C_  dom  F )
3534adantlr 697 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  o  e.  J )  ->  o  C_ 
dom  F )
3635adantlr 697 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  /\  o  e.  J
)  ->  o  C_  dom  F )
3736adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  /\  o  e.  J )  ->  o  C_ 
dom  F )
38 funimass3 5882 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  o  C_ 
dom  F )  -> 
( ( F "
o )  C_  y  <->  o 
C_  ( `' F " y ) ) )
3927, 37, 38syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  /\  o  e.  J )  ->  (
( F " o
)  C_  y  <->  o  C_  ( `' F " y ) ) )
4023, 39sylibd 207 . . . . . . . . 9  |-  ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  /\  o  e.  J )  ->  (
( F " o
)  C_  g  ->  o 
C_  ( `' F " y ) ) )
4140anim2d 550 . . . . . . . 8  |-  ( ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K
) `  A )  /\  y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  /\  o  e.  J )  ->  (
( A  e.  o  /\  ( F "
o )  C_  g
)  ->  ( A  e.  o  /\  o  C_  ( `' F "
y ) ) ) )
4241reximdva 2825 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  ->  ( E. o  e.  J  ( A  e.  o  /\  ( F " o
)  C_  g )  ->  E. o  e.  J  ( A  e.  o  /\  o  C_  ( `' F " y ) ) ) )
4319, 42mpd 15 . . . . . 6  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  /\  ( g  e.  K  /\  ( { ( F `  A
) }  C_  g  /\  g  C_  y ) ) )  ->  E. o  e.  J  ( A  e.  o  /\  o  C_  ( `' F "
y ) ) )
448, 43rexlimddv 2841 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  ->  E. o  e.  J  ( A  e.  o  /\  o  C_  ( `' F " y ) ) )
4528isneip 17207 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  e.  X )  ->  ( ( `' F " y )  e.  ( ( nei `  J
) `  { A } )  <->  ( ( `' F " y ) 
C_  X  /\  E. o  e.  J  ( A  e.  o  /\  o  C_  ( `' F " y ) ) ) ) )
46453ad2antl1 1120 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( ( `' F " y )  e.  ( ( nei `  J ) `  { A } )  <->  ( ( `' F " y ) 
C_  X  /\  E. o  e.  J  ( A  e.  o  /\  o  C_  ( `' F " y ) ) ) ) )
4746adantr 453 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  ->  ( ( `' F " y )  e.  ( ( nei `  J ) `  { A } )  <->  ( ( `' F " y ) 
C_  X  /\  E. o  e.  J  ( A  e.  o  /\  o  C_  ( `' F " y ) ) ) ) )
485, 44, 47mpbir2and 890 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  A )  /\  y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ) )  ->  ( `' F " y )  e.  ( ( nei `  J
) `  { A } ) )
4948exp32 590 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  ->  ( y  e.  ( ( nei `  K
) `  { ( F `  A ) } )  ->  ( `' F " y )  e.  ( ( nei `  J ) `  { A } ) ) ) )
5049ralrimdv 2802 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  ->  A. y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } ) ) )
51 simpll3 999 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } ) )  ->  F : X --> Y )
52 opnneip 17221 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Top  /\  o  e.  K  /\  ( F `  A )  e.  o )  -> 
o  e.  ( ( nei `  K ) `
 { ( F `
 A ) } ) )
53 imaeq2 5234 . . . . . . . . . . . . . . . 16  |-  ( y  =  o  ->  ( `' F " y )  =  ( `' F " o ) )
5453eleq1d 2509 . . . . . . . . . . . . . . 15  |-  ( y  =  o  ->  (
( `' F "
y )  e.  ( ( nei `  J
) `  { A } )  <->  ( `' F " o )  e.  ( ( nei `  J
) `  { A } ) ) )
5554rspcv 3057 . . . . . . . . . . . . . 14  |-  ( o  e.  ( ( nei `  K ) `  {
( F `  A
) } )  -> 
( A. y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } )  ->  ( `' F " o )  e.  ( ( nei `  J ) `  { A } ) ) )
5652, 55syl 16 . . . . . . . . . . . . 13  |-  ( ( K  e.  Top  /\  o  e.  K  /\  ( F `  A )  e.  o )  -> 
( A. y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } )  ->  ( `' F " o )  e.  ( ( nei `  J ) `  { A } ) ) )
57563com23 1160 . . . . . . . . . . . 12  |-  ( ( K  e.  Top  /\  ( F `  A )  e.  o  /\  o  e.  K )  ->  ( A. y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } )  ->  ( `' F " o )  e.  ( ( nei `  J ) `  { A } ) ) )
58573expb 1155 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  ( ( F `  A )  e.  o  /\  o  e.  K
) )  ->  ( A. y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } )  ->  ( `' F " o )  e.  ( ( nei `  J ) `  { A } ) ) )
59583ad2antl2 1121 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  ( ( F `
 A )  e.  o  /\  o  e.  K ) )  -> 
( A. y  e.  ( ( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } )  ->  ( `' F " o )  e.  ( ( nei `  J ) `  { A } ) ) )
6059adantlr 697 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  ->  ( A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } )  ->  ( `' F " o )  e.  ( ( nei `  J ) `  { A } ) ) )
61 neii2 17210 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( `' F " o )  e.  ( ( nei `  J ) `  { A } ) )  ->  E. g  e.  J  ( { A }  C_  g  /\  g  C_  ( `' F " o ) ) )
6261ex 425 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  (
( `' F "
o )  e.  ( ( nei `  J
) `  { A } )  ->  E. g  e.  J  ( { A }  C_  g  /\  g  C_  ( `' F " o ) ) ) )
63623ad2ant1 979 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( ( `' F " o )  e.  ( ( nei `  J
) `  { A } )  ->  E. g  e.  J  ( { A }  C_  g  /\  g  C_  ( `' F " o ) ) ) )
6463ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  ->  ( ( `' F " o )  e.  ( ( nei `  J ) `  { A } )  ->  E. g  e.  J  ( { A }  C_  g  /\  g  C_  ( `' F " o ) ) ) )
65 snssg 3961 . . . . . . . . . . . . 13  |-  ( A  e.  X  ->  ( A  e.  g  <->  { A }  C_  g ) )
6665ad3antlr 713 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  /\  g  e.  J )  ->  ( A  e.  g  <->  { A }  C_  g ) )
6725ad3antrrr 712 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  /\  g  e.  J )  ->  Fun  F )
6828eltopss 17018 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  g  e.  J )  ->  g  C_  X )
69683ad2antl1 1120 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  g  e.  J
)  ->  g  C_  X )
702sseq2d 3365 . . . . . . . . . . . . . . . . . 18  |-  ( F : X --> Y  -> 
( g  C_  dom  F  <-> 
g  C_  X )
)
71703ad2ant3 981 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( g  C_  dom  F  <-> 
g  C_  X )
)
7271biimpar 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  g  C_  X
)  ->  g  C_  dom  F )
7369, 72syldan 458 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  g  e.  J
)  ->  g  C_  dom  F )
7473adantlr 697 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  g  e.  J )  ->  g  C_ 
dom  F )
7574adantlr 697 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  /\  g  e.  J )  ->  g  C_ 
dom  F )
76 funimass3 5882 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  g  C_ 
dom  F )  -> 
( ( F "
g )  C_  o  <->  g 
C_  ( `' F " o ) ) )
7767, 75, 76syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  /\  g  e.  J )  ->  (
( F " g
)  C_  o  <->  g  C_  ( `' F " o ) ) )
7866, 77anbi12d 693 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  /\  g  e.  J )  ->  (
( A  e.  g  /\  ( F "
g )  C_  o
)  <->  ( { A }  C_  g  /\  g  C_  ( `' F "
o ) ) ) )
7978biimprd 216 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X
--> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  /\  g  e.  J )  ->  (
( { A }  C_  g  /\  g  C_  ( `' F " o ) )  ->  ( A  e.  g  /\  ( F " g )  C_  o ) ) )
8079reximdva 2825 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  ->  ( E. g  e.  J  ( { A }  C_  g  /\  g  C_  ( `' F " o ) )  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g )  C_  o ) ) )
8160, 64, 803syld 54 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  (
( F `  A
)  e.  o  /\  o  e.  K )
)  ->  ( A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } )  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g )  C_  o ) ) )
8281exp32 590 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( ( F `  A )  e.  o  ->  ( o  e.  K  ->  ( A. y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } )  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g )  C_  o ) ) ) ) )
8382com24 84 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } )  ->  (
o  e.  K  -> 
( ( F `  A )  e.  o  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g
)  C_  o )
) ) ) )
8483imp 420 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } ) )  -> 
( o  e.  K  ->  ( ( F `  A )  e.  o  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g
)  C_  o )
) ) )
8584ralrimiv 2795 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } ) )  ->  A. o  e.  K  ( ( F `  A )  e.  o  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g
)  C_  o )
) )
86 cnpnei.2 . . . . . . . . 9  |-  Y  = 
U. K
8728, 86iscnp2 17341 . . . . . . . 8  |-  ( F  e.  ( ( J  CnP  K ) `  A )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  A  e.  X )  /\  ( F : X --> Y  /\  A. o  e.  K  ( ( F `  A
)  e.  o  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g
)  C_  o )
) ) ) )
8887baib 873 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  A  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <->  ( F : X --> Y  /\  A. o  e.  K  (
( F `  A
)  e.  o  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g
)  C_  o )
) ) ) )
89883expa 1154 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. o  e.  K  ( ( F `
 A )  e.  o  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g )  C_  o ) ) ) ) )
90893adantl3 1116 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. o  e.  K  ( ( F `
 A )  e.  o  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g )  C_  o ) ) ) ) )
9190adantr 453 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } ) )  -> 
( F  e.  ( ( J  CnP  K
) `  A )  <->  ( F : X --> Y  /\  A. o  e.  K  ( ( F `  A
)  e.  o  ->  E. g  e.  J  ( A  e.  g  /\  ( F " g
)  C_  o )
) ) ) )
9251, 85, 91mpbir2and 890 . . 3  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X )  /\  A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) )
9392ex 425 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( A. y  e.  ( ( nei `  K ) `  { ( F `  A ) } ) ( `' F "
y )  e.  ( ( nei `  J
) `  { A } )  ->  F  e.  ( ( J  CnP  K ) `  A ) ) )
9450, 93impbid 185 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <->  A. y  e.  (
( nei `  K
) `  { ( F `  A ) } ) ( `' F " y )  e.  ( ( nei `  J ) `  { A } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1654    e. wcel 1728   A.wral 2712   E.wrex 2713    C_ wss 3309   {csn 3843   U.cuni 4044   `'ccnv 4912   dom cdm 4913   "cima 4916   Fun wfun 5483   -->wf 5485   ` cfv 5489  (class class class)co 6117   Topctop 16996   neicnei 17199    CnP ccnp 17327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-map 7056  df-top 17001  df-topon 17004  df-nei 17200  df-cnp 17330
  Copyright terms: Public domain W3C validator