MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrecnv Unicode version

Theorem cnrecnv 11666
Description: The inverse to the canonical bijection from  ( RR  X.  RR ) to  CC from cnref1o 10365. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnrecnv  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Distinct variable groups:    z, F    x, y, z
Allowed substitution hints:    F( x, y)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
21cnref1o 10365 . . . . . 6  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
3 f1ocnv 5501 . . . . . 6  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' F : CC -1-1-onto-> ( RR  X.  RR ) )
4 f1of 5488 . . . . . 6  |-  ( `' F : CC -1-1-onto-> ( RR  X.  RR )  ->  `' F : CC
--> ( RR  X.  RR ) )
52, 3, 4mp2b 9 . . . . 5  |-  `' F : CC --> ( RR  X.  RR )
65a1i 10 . . . 4  |-  (  T. 
->  `' F : CC --> ( RR 
X.  RR ) )
76feqmptd 5591 . . 3  |-  (  T. 
->  `' F  =  (
z  e.  CC  |->  ( `' F `  z ) ) )
87trud 1314 . 2  |-  `' F  =  ( z  e.  CC  |->  ( `' F `  z ) )
9 df-ov 5877 . . . . . . 7  |-  ( ( Re `  z ) F ( Im `  z ) )  =  ( F `  <. ( Re `  z ) ,  ( Im `  z ) >. )
10 recl 11611 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Re `  z )  e.  RR )
11 imcl 11612 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Im `  z )  e.  RR )
12 oveq1 5881 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  y
) ) )
13 oveq2 5882 . . . . . . . . . 10  |-  ( y  =  ( Im `  z )  ->  (
_i  x.  y )  =  ( _i  x.  ( Im `  z ) ) )
1413oveq2d 5890 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
( Re `  z
)  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
15 ovex 5899 . . . . . . . . 9  |-  ( ( Re `  z )  +  ( _i  x.  ( Im `  z ) ) )  e.  _V
1612, 14, 1, 15ovmpt2 5999 . . . . . . . 8  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR )  -> 
( ( Re `  z ) F ( Im `  z ) )  =  ( ( Re `  z )  +  ( _i  x.  ( Im `  z ) ) ) )
1710, 11, 16syl2anc 642 . . . . . . 7  |-  ( z  e.  CC  ->  (
( Re `  z
) F ( Im
`  z ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
189, 17syl5eqr 2342 . . . . . 6  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  ( ( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) ) )
19 replim 11617 . . . . . 6  |-  ( z  e.  CC  ->  z  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
2018, 19eqtr4d 2331 . . . . 5  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  z )
2120fveq2d 5545 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  ( `' F `  z ) )
22 opelxpi 4737 . . . . . 6  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR )  ->  <. ( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )
2310, 11, 22syl2anc 642 . . . . 5  |-  ( z  e.  CC  ->  <. (
Re `  z ) ,  ( Im `  z ) >.  e.  ( RR  X.  RR ) )
24 f1ocnvfv1 5808 . . . . 5  |-  ( ( F : ( RR 
X.  RR ) -1-1-onto-> CC  /\  <.
( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
252, 23, 24sylancr 644 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
2621, 25eqtr3d 2330 . . 3  |-  ( z  e.  CC  ->  ( `' F `  z )  =  <. ( Re `  z ) ,  ( Im `  z )
>. )
2726mpteq2ia 4118 . 2  |-  ( z  e.  CC  |->  ( `' F `  z ) )  =  ( z  e.  CC  |->  <. (
Re `  z ) ,  ( Im `  z ) >. )
288, 27eqtri 2316 1  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Colors of variables: wff set class
Syntax hints:    T. wtru 1307    = wceq 1632    e. wcel 1696   <.cop 3656    e. cmpt 4093    X. cxp 4703   `'ccnv 4704   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   CCcc 8751   RRcr 8752   _ici 8755    + caddc 8756    x. cmul 8758   Recre 11598   Imcim 11599
This theorem is referenced by:  cnrehmeo  18467  cnheiborlem  18468  mbfimaopnlem  19026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-cj 11600  df-re 11601  df-im 11602
  Copyright terms: Public domain W3C validator