MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrecnv Unicode version

Theorem cnrecnv 11615
Description: The inverse to the canonical bijection from  ( RR  X.  RR ) to  CC from cnref1o 10316. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
cnrecnv.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnrecnv  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Distinct variable groups:    z, F    x, y, z
Allowed substitution hints:    F( x, y)

Proof of Theorem cnrecnv
StepHypRef Expression
1 cnrecnv.1 . . . . . . 7  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
21cnref1o 10316 . . . . . 6  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
3 f1ocnv 5423 . . . . . 6  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' F : CC -1-1-onto-> ( RR  X.  RR ) )
4 f1of 5410 . . . . . 6  |-  ( `' F : CC -1-1-onto-> ( RR  X.  RR )  ->  `' F : CC
--> ( RR  X.  RR ) )
52, 3, 4mp2b 11 . . . . 5  |-  `' F : CC --> ( RR  X.  RR )
65a1i 12 . . . 4  |-  (  T. 
->  `' F : CC --> ( RR 
X.  RR ) )
76feqmptd 5509 . . 3  |-  (  T. 
->  `' F  =  (
z  e.  CC  |->  ( `' F `  z ) ) )
87trud 1320 . 2  |-  `' F  =  ( z  e.  CC  |->  ( `' F `  z ) )
9 df-ov 5795 . . . . . . 7  |-  ( ( Re `  z ) F ( Im `  z ) )  =  ( F `  <. ( Re `  z ) ,  ( Im `  z ) >. )
10 recl 11560 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Re `  z )  e.  RR )
11 imcl 11561 . . . . . . . 8  |-  ( z  e.  CC  ->  (
Im `  z )  e.  RR )
12 oveq1 5799 . . . . . . . . 9  |-  ( x  =  ( Re `  z )  ->  (
x  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  y
) ) )
13 oveq2 5800 . . . . . . . . . 10  |-  ( y  =  ( Im `  z )  ->  (
_i  x.  y )  =  ( _i  x.  ( Im `  z ) ) )
1413oveq2d 5808 . . . . . . . . 9  |-  ( y  =  ( Im `  z )  ->  (
( Re `  z
)  +  ( _i  x.  y ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
15 ovex 5817 . . . . . . . . 9  |-  ( ( Re `  z )  +  ( _i  x.  ( Im `  z ) ) )  e.  _V
1612, 14, 1, 15ovmpt2 5917 . . . . . . . 8  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR )  -> 
( ( Re `  z ) F ( Im `  z ) )  =  ( ( Re `  z )  +  ( _i  x.  ( Im `  z ) ) ) )
1710, 11, 16syl2anc 645 . . . . . . 7  |-  ( z  e.  CC  ->  (
( Re `  z
) F ( Im
`  z ) )  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
189, 17syl5eqr 2304 . . . . . 6  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  ( ( Re `  z
)  +  ( _i  x.  ( Im `  z ) ) ) )
19 replim 11566 . . . . . 6  |-  ( z  e.  CC  ->  z  =  ( ( Re
`  z )  +  ( _i  x.  (
Im `  z )
) ) )
2018, 19eqtr4d 2293 . . . . 5  |-  ( z  e.  CC  ->  ( F `  <. ( Re
`  z ) ,  ( Im `  z
) >. )  =  z )
2120fveq2d 5462 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  ( `' F `  z ) )
22 opelxpi 4709 . . . . . 6  |-  ( ( ( Re `  z
)  e.  RR  /\  ( Im `  z )  e.  RR )  ->  <. ( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )
2310, 11, 22syl2anc 645 . . . . 5  |-  ( z  e.  CC  ->  <. (
Re `  z ) ,  ( Im `  z ) >.  e.  ( RR  X.  RR ) )
24 f1ocnvfv1 5726 . . . . 5  |-  ( ( F : ( RR 
X.  RR ) -1-1-onto-> CC  /\  <.
( Re `  z
) ,  ( Im
`  z ) >.  e.  ( RR  X.  RR ) )  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
252, 23, 24sylancr 647 . . . 4  |-  ( z  e.  CC  ->  ( `' F `  ( F `
 <. ( Re `  z ) ,  ( Im `  z )
>. ) )  =  <. ( Re `  z ) ,  ( Im `  z ) >. )
2621, 25eqtr3d 2292 . . 3  |-  ( z  e.  CC  ->  ( `' F `  z )  =  <. ( Re `  z ) ,  ( Im `  z )
>. )
2726mpteq2ia 4076 . 2  |-  ( z  e.  CC  |->  ( `' F `  z ) )  =  ( z  e.  CC  |->  <. (
Re `  z ) ,  ( Im `  z ) >. )
288, 27eqtri 2278 1  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
Colors of variables: wff set class
Syntax hints:    T. wtru 1312    = wceq 1619    e. wcel 1621   <.cop 3617    e. cmpt 4051    X. cxp 4659   `'ccnv 4660   -->wf 4669   -1-1-onto->wf1o 4672   ` cfv 4673  (class class class)co 5792    e. cmpt2 5794   CCcc 8703   RRcr 8704   _ici 8707    + caddc 8708    x. cmul 8710   Recre 11547   Imcim 11548
This theorem is referenced by:  cnrehmeo  18413  cnheiborlem  18414  mbfimaopnlem  18972
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-2 9772  df-cj 11549  df-re 11550  df-im 11551
  Copyright terms: Public domain W3C validator