MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnref1o Structured version   Unicode version

Theorem cnref1o 10607
Description: There is a natural one-to-one mapping from  ( RR  X.  RR ) to  CC, where we map  <. x ,  y
>. to  ( x  +  ( _i  x.  y ) ). In our construction of the complex numbers, this is in fact our definition of  CC (see df-c 8996), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnref1o  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
Distinct variable group:    x, y
Allowed substitution hints:    F( x, y)

Proof of Theorem cnref1o
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnref1o.1 . . . . 5  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
2 ovex 6106 . . . . 5  |-  ( x  +  ( _i  x.  y ) )  e. 
_V
31, 2fnmpt2i 6420 . . . 4  |-  F  Fn  ( RR  X.  RR )
4 1st2nd2 6386 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >. )
54fveq2d 5732 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
6 df-ov 6084 . . . . . . . 8  |-  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
75, 6syl6eqr 2486 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
8 xp1st 6376 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  RR )
9 xp2nd 6377 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  RR )
10 oveq1 6088 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  ( _i  x.  y ) )  =  ( ( 1st `  z
)  +  ( _i  x.  y ) ) )
11 oveq2 6089 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( _i  x.  y )  =  ( _i  x.  ( 2nd `  z ) ) )
1211oveq2d 6097 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z )  +  ( _i  x.  y
) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
13 ovex 6106 . . . . . . . . 9  |-  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  e.  _V
1410, 12, 1, 13ovmpt2 6209 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR )  -> 
( ( 1st `  z
) F ( 2nd `  z ) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
158, 9, 14syl2anc 643 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
167, 15eqtrd 2468 . . . . . 6  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
178recnd 9114 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  CC )
18 ax-icn 9049 . . . . . . . 8  |-  _i  e.  CC
199recnd 9114 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  CC )
20 mulcl 9074 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( 2nd `  z )  e.  CC )  -> 
( _i  x.  ( 2nd `  z ) )  e.  CC )
2118, 19, 20sylancr 645 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( _i  x.  ( 2nd `  z
) )  e.  CC )
2217, 21addcld 9107 . . . . . 6  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  e.  CC )
2316, 22eqeltrd 2510 . . . . 5  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  e.  CC )
2423rgen 2771 . . . 4  |-  A. z  e.  ( RR  X.  RR ) ( F `  z )  e.  CC
25 ffnfv 5894 . . . 4  |-  ( F : ( RR  X.  RR ) --> CC  <->  ( F  Fn  ( RR  X.  RR )  /\  A. z  e.  ( RR  X.  RR ) ( F `  z )  e.  CC ) )
263, 24, 25mpbir2an 887 . . 3  |-  F :
( RR  X.  RR )
--> CC
278, 9jca 519 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z )  e.  RR  /\  ( 2nd `  z )  e.  RR ) )
28 xp1st 6376 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  ( 1st `  w )  e.  RR )
29 xp2nd 6377 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  ( 2nd `  w )  e.  RR )
3028, 29jca 519 . . . . . . 7  |-  ( w  e.  ( RR  X.  RR )  ->  ( ( 1st `  w )  e.  RR  /\  ( 2nd `  w )  e.  RR ) )
31 cru 9992 . . . . . . 7  |-  ( ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR )  /\  ( ( 1st `  w
)  e.  RR  /\  ( 2nd `  w )  e.  RR ) )  ->  ( ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) )  <->  ( ( 1st `  z )  =  ( 1st `  w
)  /\  ( 2nd `  z )  =  ( 2nd `  w ) ) ) )
3227, 30, 31syl2an 464 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  =  ( ( 1st `  w )  +  ( _i  x.  ( 2nd `  w ) ) )  <-> 
( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) ) )
33 fveq2 5728 . . . . . . . . 9  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
34 fveq2 5728 . . . . . . . . . 10  |-  ( z  =  w  ->  ( 1st `  z )  =  ( 1st `  w
) )
35 fveq2 5728 . . . . . . . . . . 11  |-  ( z  =  w  ->  ( 2nd `  z )  =  ( 2nd `  w
) )
3635oveq2d 6097 . . . . . . . . . 10  |-  ( z  =  w  ->  (
_i  x.  ( 2nd `  z ) )  =  ( _i  x.  ( 2nd `  w ) ) )
3734, 36oveq12d 6099 . . . . . . . . 9  |-  ( z  =  w  ->  (
( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) )
3833, 37eqeq12d 2450 . . . . . . . 8  |-  ( z  =  w  ->  (
( F `  z
)  =  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  <->  ( F `  w )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) ) )
3938, 16vtoclga 3017 . . . . . . 7  |-  ( w  e.  ( RR  X.  RR )  ->  ( F `
 w )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) )
4016, 39eqeqan12d 2451 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  <-> 
( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) ) )
41 1st2nd2 6386 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  w  = 
<. ( 1st `  w
) ,  ( 2nd `  w ) >. )
424, 41eqeqan12d 2451 . . . . . . 7  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( z  =  w  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
43 fvex 5742 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
44 fvex 5742 . . . . . . . 8  |-  ( 2nd `  z )  e.  _V
4543, 44opth 4435 . . . . . . 7  |-  ( <.
( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. 
<->  ( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) )
4642, 45syl6bb 253 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( z  =  w  <-> 
( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) ) )
4732, 40, 463bitr4d 277 . . . . 5  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  <-> 
z  =  w ) )
4847biimpd 199 . . . 4  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
4948rgen2a 2772 . . 3  |-  A. z  e.  ( RR  X.  RR ) A. w  e.  ( RR  X.  RR ) ( ( F `  z )  =  ( F `  w )  ->  z  =  w )
50 dff13 6004 . . 3  |-  ( F : ( RR  X.  RR ) -1-1-> CC  <->  ( F :
( RR  X.  RR )
--> CC  /\  A. z  e.  ( RR  X.  RR ) A. w  e.  ( RR  X.  RR ) ( ( F `  z )  =  ( F `  w )  ->  z  =  w ) ) )
5126, 49, 50mpbir2an 887 . 2  |-  F :
( RR  X.  RR ) -1-1-> CC
52 cnre 9087 . . . . . 6  |-  ( w  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  w  =  ( u  +  ( _i  x.  v ) ) )
53 oveq1 6088 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  +  ( _i  x.  y ) )  =  ( u  +  ( _i  x.  y
) ) )
54 oveq2 6089 . . . . . . . . . 10  |-  ( y  =  v  ->  (
_i  x.  y )  =  ( _i  x.  v ) )
5554oveq2d 6097 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  +  ( _i  x.  y ) )  =  ( u  +  ( _i  x.  v
) ) )
56 ovex 6106 . . . . . . . . 9  |-  ( u  +  ( _i  x.  v ) )  e. 
_V
5753, 55, 1, 56ovmpt2 6209 . . . . . . . 8  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u F v )  =  ( u  +  ( _i  x.  v ) ) )
5857eqeq2d 2447 . . . . . . 7  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( w  =  ( u F v )  <-> 
w  =  ( u  +  ( _i  x.  v ) ) ) )
59582rexbiia 2739 . . . . . 6  |-  ( E. u  e.  RR  E. v  e.  RR  w  =  ( u F v )  <->  E. u  e.  RR  E. v  e.  RR  w  =  ( u  +  ( _i  x.  v ) ) )
6052, 59sylibr 204 . . . . 5  |-  ( w  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  w  =  ( u F v ) )
61 fveq2 5728 . . . . . . . 8  |-  ( z  =  <. u ,  v
>.  ->  ( F `  z )  =  ( F `  <. u ,  v >. )
)
62 df-ov 6084 . . . . . . . 8  |-  ( u F v )  =  ( F `  <. u ,  v >. )
6361, 62syl6eqr 2486 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( F `  z )  =  ( u F v ) )
6463eqeq2d 2447 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( w  =  ( F `  z
)  <->  w  =  (
u F v ) ) )
6564rexxp 5017 . . . . 5  |-  ( E. z  e.  ( RR 
X.  RR ) w  =  ( F `  z )  <->  E. u  e.  RR  E. v  e.  RR  w  =  ( u F v ) )
6660, 65sylibr 204 . . . 4  |-  ( w  e.  CC  ->  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
)
6766rgen 2771 . . 3  |-  A. w  e.  CC  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
68 dffo3 5884 . . 3  |-  ( F : ( RR  X.  RR ) -onto-> CC  <->  ( F :
( RR  X.  RR )
--> CC  /\  A. w  e.  CC  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
) )
6926, 67, 68mpbir2an 887 . 2  |-  F :
( RR  X.  RR ) -onto-> CC
70 df-f1o 5461 . 2  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  <->  ( F :
( RR  X.  RR ) -1-1-> CC  /\  F :
( RR  X.  RR ) -onto-> CC ) )
7151, 69, 70mpbir2an 887 1  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   <.cop 3817    X. cxp 4876    Fn wfn 5449   -->wf 5450   -1-1->wf1 5451   -onto->wfo 5452   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   1stc1st 6347   2ndc2nd 6348   CCcc 8988   RRcr 8989   _ici 8992    + caddc 8993    x. cmul 8995
This theorem is referenced by:  cnexALT  10608  cnrecnv  11970  cpnnen  12828  cnheiborlem  18979  mbfimaopnlem  19547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678
  Copyright terms: Public domain W3C validator