MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrngo Unicode version

Theorem cnrngo 21832
Description: The set of complex numbers is a (unital) ring. (Contributed by Steve Rodriguez, 2-Feb-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
cnrngo  |-  <.  +  ,  x.  >.  e.  RingOps

Proof of Theorem cnrngo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnaddablo 21779 . . 3  |-  +  e.  AbelOp
2 ax-mulf 8996 . . 3  |-  x.  :
( CC  X.  CC )
--> CC
31, 2pm3.2i 442 . 2  |-  (  +  e.  AbelOp  /\  x.  : ( CC  X.  CC ) --> CC )
4 mulass 9004 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
5 adddi 9005 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z
) ) )
6 adddir 9009 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z
) ) )
74, 5, 63jca 1134 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) )  /\  ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) ) )
87rgen3 2739 . . 3  |-  A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )
9 ax-1cn 8974 . . . 4  |-  1  e.  CC
10 mulid2 9015 . . . . . 6  |-  ( y  e.  CC  ->  (
1  x.  y )  =  y )
11 mulid1 9014 . . . . . 6  |-  ( y  e.  CC  ->  (
y  x.  1 )  =  y )
1210, 11jca 519 . . . . 5  |-  ( y  e.  CC  ->  (
( 1  x.  y
)  =  y  /\  ( y  x.  1 )  =  y ) )
1312rgen 2707 . . . 4  |-  A. y  e.  CC  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y )
14 oveq1 6020 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  y )  =  ( 1  x.  y ) )
1514eqeq1d 2388 . . . . . . 7  |-  ( x  =  1  ->  (
( x  x.  y
)  =  y  <->  ( 1  x.  y )  =  y ) )
16 oveq2 6021 . . . . . . . 8  |-  ( x  =  1  ->  (
y  x.  x )  =  ( y  x.  1 ) )
1716eqeq1d 2388 . . . . . . 7  |-  ( x  =  1  ->  (
( y  x.  x
)  =  y  <->  ( y  x.  1 )  =  y ) )
1815, 17anbi12d 692 . . . . . 6  |-  ( x  =  1  ->  (
( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )  <->  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y ) ) )
1918ralbidv 2662 . . . . 5  |-  ( x  =  1  ->  ( A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )  <->  A. y  e.  CC  ( ( 1  x.  y )  =  y  /\  ( y  x.  1 )  =  y ) ) )
2019rspcev 2988 . . . 4  |-  ( ( 1  e.  CC  /\  A. y  e.  CC  (
( 1  x.  y
)  =  y  /\  ( y  x.  1 )  =  y ) )  ->  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) )
219, 13, 20mp2an 654 . . 3  |-  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y )
228, 21pm3.2i 442 . 2  |-  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) )
23 mulex 10536 . . 3  |-  x.  e.  _V
24 ablogrpo 21713 . . . . . 6  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
251, 24ax-mp 8 . . . . 5  |-  +  e.  GrpOp
26 ax-addf 8995 . . . . . 6  |-  +  :
( CC  X.  CC )
--> CC
2726fdmi 5529 . . . . 5  |-  dom  +  =  ( CC  X.  CC )
2825, 27grporn 21641 . . . 4  |-  CC  =  ran  +
2928isrngo 21807 . . 3  |-  (  x.  e.  _V  ->  ( <.  +  ,  x.  >.  e.  RingOps  <->  ( (  +  e.  AbelOp  /\  x.  : ( CC 
X.  CC ) --> CC )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  ( ( ( x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) )  /\  ( x  x.  ( y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z )  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) ) ) ) )
3023, 29ax-mp 8 . 2  |-  ( <.  +  ,  x.  >.  e.  RingOps  <->  ( (  +  e.  AbelOp  /\  x.  : ( CC  X.  CC ) --> CC )  /\  ( A. x  e.  CC  A. y  e.  CC  A. z  e.  CC  (
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) )  /\  ( x  x.  (
y  +  z ) )  =  ( ( x  x.  y )  +  ( x  x.  z ) )  /\  ( ( x  +  y )  x.  z
)  =  ( ( x  x.  z )  +  ( y  x.  z ) ) )  /\  E. x  e.  CC  A. y  e.  CC  ( ( x  x.  y )  =  y  /\  ( y  x.  x )  =  y ) ) ) )
313, 22, 30mpbir2an 887 1  |-  <.  +  ,  x.  >.  e.  RingOps
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643   _Vcvv 2892   <.cop 3753    X. cxp 4809   -->wf 5383  (class class class)co 6013   CCcc 8914   1c1 8917    + caddc 8919    x. cmul 8921   GrpOpcgr 21615   AbelOpcablo 21710   RingOpscrngo 21804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-po 4437  df-so 4438  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-ltxr 9051  df-sub 9218  df-neg 9219  df-grpo 21620  df-ablo 21711  df-rngo 21805
  Copyright terms: Public domain W3C validator