Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrsfin Unicode version

Theorem cnrsfin 24936
Description: A mapping remains continuous when the topology associated to its domain is replaced by a finer one. (Contributed by FL, 22-May-2008.)
Assertion
Ref Expression
cnrsfin  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  ->  (
( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K )  ->  F  e.  ( K  Cn  L
) ) )

Proof of Theorem cnrsfin
StepHypRef Expression
1 simpl2 959 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  /\  ( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K ) )  ->  K  e.  Top )
2 simpr2 962 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  /\  ( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K ) )  ->  U. J  =  U. K )
3 istopon 16659 . . . . 5  |-  ( K  e.  (TopOn `  U. J )  <->  ( K  e.  Top  /\  U. J  =  U. K ) )
41, 2, 3sylanbrc 645 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  /\  ( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K ) )  ->  K  e.  (TopOn `  U. J ) )
5 simpr3 963 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  /\  ( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K ) )  ->  J  C_  K )
6 eqid 2284 . . . . 5  |-  U. J  =  U. J
76cnss1 17001 . . . 4  |-  ( ( K  e.  (TopOn `  U. J )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L
) )
84, 5, 7syl2anc 642 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  /\  ( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K ) )  -> 
( J  Cn  L
)  C_  ( K  Cn  L ) )
9 simpr1 961 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  /\  ( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K ) )  ->  F  e.  ( J  Cn  L ) )
108, 9sseldd 3182 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  /\  ( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K ) )  ->  F  e.  ( K  Cn  L ) )
1110ex 423 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  ->  (
( F  e.  ( J  Cn  L )  /\  U. J  = 
U. K  /\  J  C_  K )  ->  F  e.  ( K  Cn  L
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    C_ wss 3153   U.cuni 3828   ` cfv 5221  (class class class)co 5820   Topctop 16627  TopOnctopon 16628    Cn ccn 16950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-map 6770  df-top 16632  df-topon 16635  df-cn 16953
  Copyright terms: Public domain W3C validator