HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnvadj Structured version   Unicode version

Theorem cnvadj 23387
Description: The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnvadj  |-  `' adjh  = 
adjh

Proof of Theorem cnvadj
Dummy variables  u  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 5266 . . 3  |-  `' { <. u ,  t >.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) }  =  { <. t ,  u >.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( u `
 y ) )  =  ( ( t `
 x )  .ih  y ) ) }
2 3ancoma 943 . . . . 5  |-  ( ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) )  <->  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) )
3 ffvelrn 5860 . . . . . . . . . . . . . . . . . 18  |-  ( ( u : ~H --> ~H  /\  y  e.  ~H )  ->  ( u `  y
)  e.  ~H )
4 ax-his1 22576 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( u `  y
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( u `  y )  .ih  x
)  =  ( * `
 ( x  .ih  ( u `  y
) ) ) )
53, 4sylan 458 . . . . . . . . . . . . . . . . 17  |-  ( ( ( u : ~H --> ~H  /\  y  e.  ~H )  /\  x  e.  ~H )  ->  ( ( u `
 y )  .ih  x )  =  ( * `  ( x 
.ih  ( u `  y ) ) ) )
65adantrl 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( u : ~H --> ~H  /\  y  e.  ~H )  /\  ( t : ~H --> ~H  /\  x  e.  ~H ) )  -> 
( ( u `  y )  .ih  x
)  =  ( * `
 ( x  .ih  ( u `  y
) ) ) )
7 ffvelrn 5860 . . . . . . . . . . . . . . . . . 18  |-  ( ( t : ~H --> ~H  /\  x  e.  ~H )  ->  ( t `  x
)  e.  ~H )
8 ax-his1 22576 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  ( t `  x
)  e.  ~H )  ->  ( y  .ih  (
t `  x )
)  =  ( * `
 ( ( t `
 x )  .ih  y ) ) )
97, 8sylan2 461 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  ( t : ~H --> ~H  /\  x  e.  ~H ) )  ->  (
y  .ih  ( t `  x ) )  =  ( * `  (
( t `  x
)  .ih  y )
) )
109adantll 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( u : ~H --> ~H  /\  y  e.  ~H )  /\  ( t : ~H --> ~H  /\  x  e.  ~H ) )  -> 
( y  .ih  (
t `  x )
)  =  ( * `
 ( ( t `
 x )  .ih  y ) ) )
116, 10eqeq12d 2449 . . . . . . . . . . . . . . 15  |-  ( ( ( u : ~H --> ~H  /\  y  e.  ~H )  /\  ( t : ~H --> ~H  /\  x  e.  ~H ) )  -> 
( ( ( u `
 y )  .ih  x )  =  ( y  .ih  ( t `
 x ) )  <-> 
( * `  (
x  .ih  ( u `  y ) ) )  =  ( * `  ( ( t `  x )  .ih  y
) ) ) )
1211ancoms 440 . . . . . . . . . . . . . 14  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( ( ( u `
 y )  .ih  x )  =  ( y  .ih  ( t `
 x ) )  <-> 
( * `  (
x  .ih  ( u `  y ) ) )  =  ( * `  ( ( t `  x )  .ih  y
) ) ) )
13 hicl 22574 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ~H  /\  ( u `  y
)  e.  ~H )  ->  ( x  .ih  (
u `  y )
)  e.  CC )
143, 13sylan2 461 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ~H  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  ->  (
x  .ih  ( u `  y ) )  e.  CC )
1514adantll 695 . . . . . . . . . . . . . . 15  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( x  .ih  (
u `  y )
)  e.  CC )
16 hicl 22574 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t `  x
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( t `  x )  .ih  y
)  e.  CC )
177, 16sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  y  e.  ~H )  ->  ( ( t `
 x )  .ih  y )  e.  CC )
1817adantrl 697 . . . . . . . . . . . . . . 15  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( ( t `  x )  .ih  y
)  e.  CC )
19 cj11 11959 . . . . . . . . . . . . . . 15  |-  ( ( ( x  .ih  (
u `  y )
)  e.  CC  /\  ( ( t `  x )  .ih  y
)  e.  CC )  ->  ( ( * `
 ( x  .ih  ( u `  y
) ) )  =  ( * `  (
( t `  x
)  .ih  y )
)  <->  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) )
2015, 18, 19syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( ( * `  ( x  .ih  ( u `
 y ) ) )  =  ( * `
 ( ( t `
 x )  .ih  y ) )  <->  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) )
2112, 20bitr2d 246 . . . . . . . . . . . . 13  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )  <->  ( ( u `  y
)  .ih  x )  =  ( y  .ih  ( t `  x
) ) ) )
2221an4s 800 . . . . . . . . . . . 12  |-  ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
)  <->  ( ( u `
 y )  .ih  x )  =  ( y  .ih  ( t `
 x ) ) ) )
2322anassrs 630 . . . . . . . . . . 11  |-  ( ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  x  e.  ~H )  /\  y  e.  ~H )  ->  ( ( x 
.ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
)  <->  ( ( u `
 y )  .ih  x )  =  ( y  .ih  ( t `
 x ) ) ) )
24 eqcom 2437 . . . . . . . . . . 11  |-  ( ( ( u `  y
)  .ih  x )  =  ( y  .ih  ( t `  x
) )  <->  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
)
2523, 24syl6bb 253 . . . . . . . . . 10  |-  ( ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  x  e.  ~H )  /\  y  e.  ~H )  ->  ( ( x 
.ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
)  <->  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
2625ralbidva 2713 . . . . . . . . 9  |-  ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A. y  e.  ~H  ( x  .ih  ( u `
 y ) )  =  ( ( t `
 x )  .ih  y )  <->  A. y  e.  ~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
2726ralbidva 2713 . . . . . . . 8  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( u `
 y ) )  =  ( ( t `
 x )  .ih  y )  <->  A. x  e.  ~H  A. y  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
28 ralcom 2860 . . . . . . . 8  |-  ( A. x  e.  ~H  A. y  e.  ~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )  <->  A. y  e.  ~H  A. x  e.  ~H  (
y  .ih  ( t `  x ) )  =  ( ( u `  y )  .ih  x
) )
2927, 28syl6bb 253 . . . . . . 7  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( u `
 y ) )  =  ( ( t `
 x )  .ih  y )  <->  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
3029pm5.32i 619 . . . . . 6  |-  ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
)  <->  ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  A. y  e.  ~H  A. x  e.  ~H  (
y  .ih  ( t `  x ) )  =  ( ( u `  y )  .ih  x
) ) )
31 df-3an 938 . . . . . 6  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) )  <->  ( (
t : ~H --> ~H  /\  u : ~H --> ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) ) )
32 df-3an 938 . . . . . 6  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e.  ~H  (
y  .ih  ( t `  x ) )  =  ( ( u `  y )  .ih  x
) )  <->  ( (
t : ~H --> ~H  /\  u : ~H --> ~H )  /\  A. y  e.  ~H  A. x  e.  ~H  (
y  .ih  ( t `  x ) )  =  ( ( u `  y )  .ih  x
) ) )
3330, 31, 323bitr4i 269 . . . . 5  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) )  <->  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
342, 33bitri 241 . . . 4  |-  ( ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) )  <->  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
3534opabbii 4264 . . 3  |-  { <. t ,  u >.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) ) }  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) }
361, 35eqtri 2455 . 2  |-  `' { <. u ,  t >.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) }  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e. 
~H  A. x  e.  ~H  ( y  .ih  (
t `  x )
)  =  ( ( u `  y ) 
.ih  x ) ) }
37 dfadj2 23380 . . 3  |-  adjh  =  { <. u ,  t
>.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) }
3837cnveqi 5039 . 2  |-  `' adjh  =  `' { <. u ,  t
>.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) }
39 dfadj2 23380 . 2  |-  adjh  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) }
4036, 38, 393eqtr4i 2465 1  |-  `' adjh  = 
adjh
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   {copab 4257   `'ccnv 4869   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   *ccj 11893   ~Hchil 22414    .ih csp 22417   adjhcado 22450
This theorem is referenced by:  funcnvadj  23388  adj1o  23389  adjbdlnb  23579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-hfi 22573  ax-his1 22576
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-2 10050  df-cj 11896  df-re 11897  df-im 11898  df-adjh 23344
  Copyright terms: Public domain W3C validator