HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnvadj Unicode version

Theorem cnvadj 22580
Description: The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnvadj  |-  `' adjh  = 
adjh

Proof of Theorem cnvadj
Dummy variables  u  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 5162 . . 3  |-  `' { <. u ,  t >.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) }  =  { <. t ,  u >.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( u `
 y ) )  =  ( ( t `
 x )  .ih  y ) ) }
2 3ancoma 941 . . . . 5  |-  ( ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) )  <->  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) )
3 ffvelrn 5743 . . . . . . . . . . . . . . . . . 18  |-  ( ( u : ~H --> ~H  /\  y  e.  ~H )  ->  ( u `  y
)  e.  ~H )
4 ax-his1 21769 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( u `  y
)  e.  ~H  /\  x  e.  ~H )  ->  ( ( u `  y )  .ih  x
)  =  ( * `
 ( x  .ih  ( u `  y
) ) ) )
53, 4sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( u : ~H --> ~H  /\  y  e.  ~H )  /\  x  e.  ~H )  ->  ( ( u `
 y )  .ih  x )  =  ( * `  ( x 
.ih  ( u `  y ) ) ) )
65adantrl 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( u : ~H --> ~H  /\  y  e.  ~H )  /\  ( t : ~H --> ~H  /\  x  e.  ~H ) )  -> 
( ( u `  y )  .ih  x
)  =  ( * `
 ( x  .ih  ( u `  y
) ) ) )
7 ffvelrn 5743 . . . . . . . . . . . . . . . . . 18  |-  ( ( t : ~H --> ~H  /\  x  e.  ~H )  ->  ( t `  x
)  e.  ~H )
8 ax-his1 21769 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  ( t `  x
)  e.  ~H )  ->  ( y  .ih  (
t `  x )
)  =  ( * `
 ( ( t `
 x )  .ih  y ) ) )
97, 8sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  ( t : ~H --> ~H  /\  x  e.  ~H ) )  ->  (
y  .ih  ( t `  x ) )  =  ( * `  (
( t `  x
)  .ih  y )
) )
109adantll 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( u : ~H --> ~H  /\  y  e.  ~H )  /\  ( t : ~H --> ~H  /\  x  e.  ~H ) )  -> 
( y  .ih  (
t `  x )
)  =  ( * `
 ( ( t `
 x )  .ih  y ) ) )
116, 10eqeq12d 2372 . . . . . . . . . . . . . . 15  |-  ( ( ( u : ~H --> ~H  /\  y  e.  ~H )  /\  ( t : ~H --> ~H  /\  x  e.  ~H ) )  -> 
( ( ( u `
 y )  .ih  x )  =  ( y  .ih  ( t `
 x ) )  <-> 
( * `  (
x  .ih  ( u `  y ) ) )  =  ( * `  ( ( t `  x )  .ih  y
) ) ) )
1211ancoms 439 . . . . . . . . . . . . . 14  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( ( ( u `
 y )  .ih  x )  =  ( y  .ih  ( t `
 x ) )  <-> 
( * `  (
x  .ih  ( u `  y ) ) )  =  ( * `  ( ( t `  x )  .ih  y
) ) ) )
13 hicl 21767 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ~H  /\  ( u `  y
)  e.  ~H )  ->  ( x  .ih  (
u `  y )
)  e.  CC )
143, 13sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ~H  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  ->  (
x  .ih  ( u `  y ) )  e.  CC )
1514adantll 694 . . . . . . . . . . . . . . 15  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( x  .ih  (
u `  y )
)  e.  CC )
16 hicl 21767 . . . . . . . . . . . . . . . . 17  |-  ( ( ( t `  x
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( t `  x )  .ih  y
)  e.  CC )
177, 16sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  y  e.  ~H )  ->  ( ( t `
 x )  .ih  y )  e.  CC )
1817adantrl 696 . . . . . . . . . . . . . . 15  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( ( t `  x )  .ih  y
)  e.  CC )
19 cj11 11737 . . . . . . . . . . . . . . 15  |-  ( ( ( x  .ih  (
u `  y )
)  e.  CC  /\  ( ( t `  x )  .ih  y
)  e.  CC )  ->  ( ( * `
 ( x  .ih  ( u `  y
) ) )  =  ( * `  (
( t `  x
)  .ih  y )
)  <->  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) )
2015, 18, 19syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( ( * `  ( x  .ih  ( u `
 y ) ) )  =  ( * `
 ( ( t `
 x )  .ih  y ) )  <->  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) )
2112, 20bitr2d 245 . . . . . . . . . . . . 13  |-  ( ( ( t : ~H --> ~H  /\  x  e.  ~H )  /\  ( u : ~H --> ~H  /\  y  e.  ~H ) )  -> 
( ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )  <->  ( ( u `  y
)  .ih  x )  =  ( y  .ih  ( t `  x
) ) ) )
2221an4s 799 . . . . . . . . . . . 12  |-  ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
)  <->  ( ( u `
 y )  .ih  x )  =  ( y  .ih  ( t `
 x ) ) ) )
2322anassrs 629 . . . . . . . . . . 11  |-  ( ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  x  e.  ~H )  /\  y  e.  ~H )  ->  ( ( x 
.ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
)  <->  ( ( u `
 y )  .ih  x )  =  ( y  .ih  ( t `
 x ) ) ) )
24 eqcom 2360 . . . . . . . . . . 11  |-  ( ( ( u `  y
)  .ih  x )  =  ( y  .ih  ( t `  x
) )  <->  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
)
2523, 24syl6bb 252 . . . . . . . . . 10  |-  ( ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  x  e.  ~H )  /\  y  e.  ~H )  ->  ( ( x 
.ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
)  <->  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
2625ralbidva 2635 . . . . . . . . 9  |-  ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  x  e.  ~H )  ->  ( A. y  e.  ~H  ( x  .ih  ( u `
 y ) )  =  ( ( t `
 x )  .ih  y )  <->  A. y  e.  ~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
2726ralbidva 2635 . . . . . . . 8  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( u `
 y ) )  =  ( ( t `
 x )  .ih  y )  <->  A. x  e.  ~H  A. y  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
28 ralcom 2776 . . . . . . . 8  |-  ( A. x  e.  ~H  A. y  e.  ~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )  <->  A. y  e.  ~H  A. x  e.  ~H  (
y  .ih  ( t `  x ) )  =  ( ( u `  y )  .ih  x
) )
2927, 28syl6bb 252 . . . . . . 7  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( u `
 y ) )  =  ( ( t `
 x )  .ih  y )  <->  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
3029pm5.32i 618 . . . . . 6  |-  ( ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
)  <->  ( ( t : ~H --> ~H  /\  u : ~H --> ~H )  /\  A. y  e.  ~H  A. x  e.  ~H  (
y  .ih  ( t `  x ) )  =  ( ( u `  y )  .ih  x
) ) )
31 df-3an 936 . . . . . 6  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) )  <->  ( (
t : ~H --> ~H  /\  u : ~H --> ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) ) )
32 df-3an 936 . . . . . 6  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e.  ~H  (
y  .ih  ( t `  x ) )  =  ( ( u `  y )  .ih  x
) )  <->  ( (
t : ~H --> ~H  /\  u : ~H --> ~H )  /\  A. y  e.  ~H  A. x  e.  ~H  (
y  .ih  ( t `  x ) )  =  ( ( u `  y )  .ih  x
) ) )
3330, 31, 323bitr4i 268 . . . . 5  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) )  <->  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
342, 33bitri 240 . . . 4  |-  ( ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) )  <->  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) )
3534opabbii 4162 . . 3  |-  { <. t ,  u >.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( u `  y ) )  =  ( ( t `  x )  .ih  y
) ) }  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) }
361, 35eqtri 2378 . 2  |-  `' { <. u ,  t >.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) }  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e. 
~H  A. x  e.  ~H  ( y  .ih  (
t `  x )
)  =  ( ( u `  y ) 
.ih  x ) ) }
37 dfadj2 22573 . . 3  |-  adjh  =  { <. u ,  t
>.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) }
3837cnveqi 4935 . 2  |-  `' adjh  =  `' { <. u ,  t
>.  |  ( u : ~H --> ~H  /\  t : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( u `  y
) )  =  ( ( t `  x
)  .ih  y )
) }
39 dfadj2 22573 . 2  |-  adjh  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. y  e.  ~H  A. x  e. 
~H  ( y  .ih  ( t `  x
) )  =  ( ( u `  y
)  .ih  x )
) }
4036, 38, 393eqtr4i 2388 1  |-  `' adjh  = 
adjh
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   A.wral 2619   {copab 4155   `'ccnv 4767   -->wf 5330   ` cfv 5334  (class class class)co 5942   CCcc 8822   *ccj 11671   ~Hchil 21607    .ih csp 21610   adjhcado 21643
This theorem is referenced by:  funcnvadj  22581  adj1o  22582  adjbdlnb  22772
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-hfi 21766  ax-his1 21769
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-po 4393  df-so 4394  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-riota 6388  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-2 9891  df-cj 11674  df-re 11675  df-im 11676  df-adjh 22537
  Copyright terms: Public domain W3C validator