MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvi Unicode version

Theorem cnvi 5038
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi  |-  `'  _I  =  _I

Proof of Theorem cnvi
StepHypRef Expression
1 vex 2743 . . . . 5  |-  x  e. 
_V
21ideq 4789 . . . 4  |-  ( y  _I  x  <->  y  =  x )
3 equcom 1824 . . . 4  |-  ( y  =  x  <->  x  =  y )
42, 3bitri 242 . . 3  |-  ( y  _I  x  <->  x  =  y )
54opabbii 4023 . 2  |-  { <. x ,  y >.  |  y  _I  x }  =  { <. x ,  y
>.  |  x  =  y }
6 df-cnv 4642 . 2  |-  `'  _I  =  { <. x ,  y
>.  |  y  _I  x }
7 df-id 4246 . 2  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
85, 6, 73eqtr4i 2286 1  |-  `'  _I  =  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1619   class class class wbr 3963   {copab 4016    _I cid 4241   `'ccnv 4625
This theorem is referenced by:  coi2  5141  funi  5188  cnvresid  5225  fcoi1  5318  ssdomg  6840  mbfid  18918
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642
  Copyright terms: Public domain W3C validator