MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsym Unicode version

Theorem cnvsym 5056
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvsym  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
Distinct variable group:    x, y, R

Proof of Theorem cnvsym
StepHypRef Expression
1 alcom 1712 . 2  |-  ( A. y A. x ( <.
y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R
)  <->  A. x A. y
( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
2 relcnv 5050 . . 3  |-  Rel  `' R
3 ssrel 4775 . . 3  |-  ( Rel  `' R  ->  ( `' R  C_  R  <->  A. y A. x ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) ) )
42, 3ax-mp 8 . 2  |-  ( `' R  C_  R  <->  A. y A. x ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
5 vex 2792 . . . . . 6  |-  y  e. 
_V
6 vex 2792 . . . . . 6  |-  x  e. 
_V
75, 6brcnv 4863 . . . . 5  |-  ( y `' R x  <->  x R
y )
8 df-br 4025 . . . . 5  |-  ( y `' R x  <->  <. y ,  x >.  e.  `' R )
97, 8bitr3i 242 . . . 4  |-  ( x R y  <->  <. y ,  x >.  e.  `' R )
10 df-br 4025 . . . 4  |-  ( y R x  <->  <. y ,  x >.  e.  R
)
119, 10imbi12i 316 . . 3  |-  ( ( x R y  -> 
y R x )  <-> 
( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
12112albii 1554 . 2  |-  ( A. x A. y ( x R y  ->  y R x )  <->  A. x A. y ( <. y ,  x >.  e.  `' R  ->  <. y ,  x >.  e.  R ) )
131, 4, 123bitr4i 268 1  |-  ( `' R  C_  R  <->  A. x A. y ( x R y  ->  y R x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    e. wcel 1685    C_ wss 3153   <.cop 3644   class class class wbr 4024   `'ccnv 4687   Rel wrel 4693
This theorem is referenced by:  dfer2  6657  twsymr  24488
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-opab 4079  df-xp 4694  df-rel 4695  df-cnv 4696
  Copyright terms: Public domain W3C validator