MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvun Unicode version

Theorem cnvun 5244
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvun  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )

Proof of Theorem cnvun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4853 . . 3  |-  `' ( A  u.  B )  =  { <. x ,  y >.  |  y ( A  u.  B
) x }
2 unopab 4252 . . . 4  |-  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  ( y A x  \/  y B x ) }
3 brun 4226 . . . . 5  |-  ( y ( A  u.  B
) x  <->  ( y A x  \/  y B x ) )
43opabbii 4240 . . . 4  |-  { <. x ,  y >.  |  y ( A  u.  B
) x }  =  { <. x ,  y
>.  |  ( y A x  \/  y B x ) }
52, 4eqtr4i 2435 . . 3  |-  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  y ( A  u.  B
) x }
61, 5eqtr4i 2435 . 2  |-  `' ( A  u.  B )  =  ( { <. x ,  y >.  |  y A x }  u.  {
<. x ,  y >.  |  y B x } )
7 df-cnv 4853 . . 3  |-  `' A  =  { <. x ,  y
>.  |  y A x }
8 df-cnv 4853 . . 3  |-  `' B  =  { <. x ,  y
>.  |  y B x }
97, 8uneq12i 3467 . 2  |-  ( `' A  u.  `' B
)  =  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )
106, 9eqtr4i 2435 1  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )
Colors of variables: wff set class
Syntax hints:    \/ wo 358    = wceq 1649    u. cun 3286   class class class wbr 4180   {copab 4233   `'ccnv 4844
This theorem is referenced by:  rnun  5247  f1oun  5661  f1oprswap  5684  sbthlem8  7191  domss2  7233  1sdom  7278  fpwwe2lem13  8481  strlemor1  13519  xpsc  13745  gsumzaddlem  15489  mbfres2  19498  constr2spthlem1  21555  constr3pthlem2  21604  ex-cnv  21706  funsnfsup  26641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-v 2926  df-un 3293  df-br 4181  df-opab 4235  df-cnv 4853
  Copyright terms: Public domain W3C validator