MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvun Unicode version

Theorem cnvun 5088
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvun  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )

Proof of Theorem cnvun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4699 . . 3  |-  `' ( A  u.  B )  =  { <. x ,  y >.  |  y ( A  u.  B
) x }
2 unopab 4097 . . . 4  |-  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  ( y A x  \/  y B x ) }
3 brun 4071 . . . . 5  |-  ( y ( A  u.  B
) x  <->  ( y A x  \/  y B x ) )
43opabbii 4085 . . . 4  |-  { <. x ,  y >.  |  y ( A  u.  B
) x }  =  { <. x ,  y
>.  |  ( y A x  \/  y B x ) }
52, 4eqtr4i 2308 . . 3  |-  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  y ( A  u.  B
) x }
61, 5eqtr4i 2308 . 2  |-  `' ( A  u.  B )  =  ( { <. x ,  y >.  |  y A x }  u.  {
<. x ,  y >.  |  y B x } )
7 df-cnv 4699 . . 3  |-  `' A  =  { <. x ,  y
>.  |  y A x }
8 df-cnv 4699 . . 3  |-  `' B  =  { <. x ,  y
>.  |  y B x }
97, 8uneq12i 3329 . 2  |-  ( `' A  u.  `' B
)  =  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )
106, 9eqtr4i 2308 1  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )
Colors of variables: wff set class
Syntax hints:    \/ wo 357    = wceq 1625    u. cun 3152   class class class wbr 4025   {copab 4078   `'ccnv 4690
This theorem is referenced by:  rnun  5091  f1oun  5494  f1oprswap  5517  sbthlem8  6980  domss2  7022  1sdom  7067  fpwwe2lem13  8266  strlemor1  13237  xpsc  13461  gsumzaddlem  15205  mbfres2  19002  ex-cnv  20826  funsnfsup  26773
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-v 2792  df-un 3159  df-br 4026  df-opab 4080  df-cnv 4699
  Copyright terms: Public domain W3C validator