MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvxp Unicode version

Theorem cnvxp 5085
Description: The converse of a cross product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvxp  |-  `' ( A  X.  B )  =  ( B  X.  A )

Proof of Theorem cnvxp
StepHypRef Expression
1 cnvopab 5071 . . 3  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }
2 ancom 439 . . . 4  |-  ( ( y  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  y  e.  A )
)
32opabbii 4057 . . 3  |-  { <. x ,  y >.  |  ( y  e.  A  /\  x  e.  B ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
41, 3eqtri 2278 . 2  |-  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B
) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  A ) }
5 df-xp 4675 . . 3  |-  ( A  X.  B )  =  { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
65cnveqi 4844 . 2  |-  `' ( A  X.  B )  =  `' { <. y ,  x >.  |  ( y  e.  A  /\  x  e.  B ) }
7 df-xp 4675 . 2  |-  ( B  X.  A )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  A ) }
84, 6, 73eqtr4i 2288 1  |-  `' ( A  X.  B )  =  ( B  X.  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1619    e. wcel 1621   {copab 4050    X. cxp 4659   `'ccnv 4660
This theorem is referenced by:  xp0  5086  rnxp  5094  rnxpss  5096  dminxp  5106  imainrect  5107  fparlem3  6154  fparlem4  6155  tposfo  6195  tposf  6196  xpider  6698  xpcomf1o  6919  fpwwe2lem13  8232  xpsc  13422  pjdm  16570  ordtrest2  16897  sqpsym  24440  dualalg  25150  xpexb  27027
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998  df-opab 4052  df-xp 4675  df-rel 4676  df-cnv 4677
  Copyright terms: Public domain W3C validator