MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coass Structured version   Unicode version

Theorem coass 5380
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
coass  |-  ( ( A  o.  B )  o.  C )  =  ( A  o.  ( B  o.  C )
)

Proof of Theorem coass
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5360 . 2  |-  Rel  (
( A  o.  B
)  o.  C )
2 relco 5360 . 2  |-  Rel  ( A  o.  ( B  o.  C ) )
3 excom 1756 . . . 4  |-  ( E. z E. w ( x C z  /\  ( z B w  /\  w A y ) )  <->  E. w E. z ( x C z  /\  ( z B w  /\  w A y ) ) )
4 anass 631 . . . . 5  |-  ( ( ( x C z  /\  z B w )  /\  w A y )  <->  ( x C z  /\  (
z B w  /\  w A y ) ) )
542exbii 1593 . . . 4  |-  ( E. w E. z ( ( x C z  /\  z B w )  /\  w A y )  <->  E. w E. z ( x C z  /\  ( z B w  /\  w A y ) ) )
63, 5bitr4i 244 . . 3  |-  ( E. z E. w ( x C z  /\  ( z B w  /\  w A y ) )  <->  E. w E. z ( ( x C z  /\  z B w )  /\  w A y ) )
7 vex 2951 . . . . . . 7  |-  z  e. 
_V
8 vex 2951 . . . . . . 7  |-  y  e. 
_V
97, 8brco 5035 . . . . . 6  |-  ( z ( A  o.  B
) y  <->  E. w
( z B w  /\  w A y ) )
109anbi2i 676 . . . . 5  |-  ( ( x C z  /\  z ( A  o.  B ) y )  <-> 
( x C z  /\  E. w ( z B w  /\  w A y ) ) )
1110exbii 1592 . . . 4  |-  ( E. z ( x C z  /\  z ( A  o.  B ) y )  <->  E. z
( x C z  /\  E. w ( z B w  /\  w A y ) ) )
12 vex 2951 . . . . 5  |-  x  e. 
_V
1312, 8opelco 5036 . . . 4  |-  ( <.
x ,  y >.  e.  ( ( A  o.  B )  o.  C
)  <->  E. z ( x C z  /\  z
( A  o.  B
) y ) )
14 exdistr 1929 . . . 4  |-  ( E. z E. w ( x C z  /\  ( z B w  /\  w A y ) )  <->  E. z
( x C z  /\  E. w ( z B w  /\  w A y ) ) )
1511, 13, 143bitr4i 269 . . 3  |-  ( <.
x ,  y >.  e.  ( ( A  o.  B )  o.  C
)  <->  E. z E. w
( x C z  /\  ( z B w  /\  w A y ) ) )
16 vex 2951 . . . . . . 7  |-  w  e. 
_V
1712, 16brco 5035 . . . . . 6  |-  ( x ( B  o.  C
) w  <->  E. z
( x C z  /\  z B w ) )
1817anbi1i 677 . . . . 5  |-  ( ( x ( B  o.  C ) w  /\  w A y )  <->  ( E. z ( x C z  /\  z B w )  /\  w A y ) )
1918exbii 1592 . . . 4  |-  ( E. w ( x ( B  o.  C ) w  /\  w A y )  <->  E. w
( E. z ( x C z  /\  z B w )  /\  w A y ) )
2012, 8opelco 5036 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  ( B  o.  C )
)  <->  E. w ( x ( B  o.  C
) w  /\  w A y ) )
21 19.41v 1924 . . . . 5  |-  ( E. z ( ( x C z  /\  z B w )  /\  w A y )  <->  ( E. z ( x C z  /\  z B w )  /\  w A y ) )
2221exbii 1592 . . . 4  |-  ( E. w E. z ( ( x C z  /\  z B w )  /\  w A y )  <->  E. w
( E. z ( x C z  /\  z B w )  /\  w A y ) )
2319, 20, 223bitr4i 269 . . 3  |-  ( <.
x ,  y >.  e.  ( A  o.  ( B  o.  C )
)  <->  E. w E. z
( ( x C z  /\  z B w )  /\  w A y ) )
246, 15, 233bitr4i 269 . 2  |-  ( <.
x ,  y >.  e.  ( ( A  o.  B )  o.  C
)  <->  <. x ,  y
>.  e.  ( A  o.  ( B  o.  C
) ) )
251, 2, 24eqrelriiv 4962 1  |-  ( ( A  o.  B )  o.  C )  =  ( A  o.  ( B  o.  C )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   <.cop 3809   class class class wbr 4204    o. ccom 4874
This theorem is referenced by:  funcoeqres  5698  fcof1o  6018  tposco  6502  mapen  7263  mapfien  7645  hashfacen  11695  cofuass  14078  setccatid  14231  frmdup3  14803  symggrp  15095  gsumval3  15506  gsumzf1o  15511  gsumzmhm  15525  prds1  15712  psrass1lem  16434  qtophmeo  17841  uniioombllem2  19467  cncombf  19542  pf1mpf  19964  pf1ind  19967  pjsdi2i  23652  pjadj2coi  23699  pj3lem1  23701  pj3i  23703  derangenlem  24849  subfacp1lem5  24862  erdsze2lem2  24882  relexpsucl  25124  relexpadd  25130  pprodcnveq  25720  cocnv  26408  diophrw  26798  eldioph2  26801  f1omvdco2  27349  symggen  27369  psgnunilem1  27374  mendrng  27458  ltrncoidN  30852  trlcoabs2N  31446  trlcoat  31447  trlcone  31452  cdlemg46  31459  cdlemg47  31460  ltrnco4  31463  tgrpgrplem  31473  tendoplass  31507  cdlemi2  31543  cdlemk2  31556  cdlemk4  31558  cdlemk8  31562  cdlemk45  31671  cdlemk54  31682  cdlemk55a  31683  erngdvlem3  31714  erngdvlem3-rN  31722  tendocnv  31746  dvhvaddass  31822  dvhlveclem  31833  cdlemn8  31929  dihopelvalcpre  31973  dih1dimatlem0  32053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-co 4879
  Copyright terms: Public domain W3C validator