MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1add Unicode version

Theorem coe1add 16645
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
coe1add.y  |-  Y  =  (Poly1 `  R )
coe1add.b  |-  B  =  ( Base `  Y
)
coe1add.p  |-  .+b  =  ( +g  `  Y )
coe1add.q  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
coe1add  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .+b  G ) )  =  ( (coe1 `  F )  o F 
.+  (coe1 `  G ) ) )

Proof of Theorem coe1add
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
2 coe1add.y . . . . . 6  |-  Y  =  (Poly1 `  R )
3 eqid 2435 . . . . . 6  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
4 coe1add.b . . . . . 6  |-  B  =  ( Base `  Y
)
52, 3, 4ply1bas 16581 . . . . 5  |-  B  =  ( Base `  ( 1o mPoly  R ) )
6 coe1add.q . . . . 5  |-  .+  =  ( +g  `  R )
7 coe1add.p . . . . . 6  |-  .+b  =  ( +g  `  Y )
82, 1, 7ply1plusg 16607 . . . . 5  |-  .+b  =  ( +g  `  ( 1o mPoly  R ) )
9 simp2 958 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  B )
10 simp3 959 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  B )
111, 5, 6, 8, 9, 10mpladd 16493 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .+b  G )  =  ( F  o F 
.+  G ) )
1211coeq1d 5025 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
( F  .+b  G
)  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) )  =  ( ( F  o F  .+  G )  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) )
13 eqid 2435 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
142, 4, 13ply1basf 16588 . . . . . 6  |-  ( F  e.  B  ->  F : ( NN0  ^m  1o ) --> ( Base `  R
) )
15 ffn 5582 . . . . . 6  |-  ( F : ( NN0  ^m  1o ) --> ( Base `  R
)  ->  F  Fn  ( NN0  ^m  1o ) )
1614, 15syl 16 . . . . 5  |-  ( F  e.  B  ->  F  Fn  ( NN0  ^m  1o ) )
17163ad2ant2 979 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  Fn  ( NN0  ^m  1o ) )
182, 4, 13ply1basf 16588 . . . . . 6  |-  ( G  e.  B  ->  G : ( NN0  ^m  1o ) --> ( Base `  R
) )
19 ffn 5582 . . . . . 6  |-  ( G : ( NN0  ^m  1o ) --> ( Base `  R
)  ->  G  Fn  ( NN0  ^m  1o ) )
2018, 19syl 16 . . . . 5  |-  ( G  e.  B  ->  G  Fn  ( NN0  ^m  1o ) )
21203ad2ant3 980 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  Fn  ( NN0  ^m  1o ) )
22 df1o2 6727 . . . . . 6  |-  1o  =  { (/) }
23 nn0ex 10216 . . . . . 6  |-  NN0  e.  _V
24 0ex 4331 . . . . . 6  |-  (/)  e.  _V
25 eqid 2435 . . . . . 6  |-  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) )  =  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) )
2622, 23, 24, 25mapsnf1o3 7053 . . . . 5  |-  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) : NN0 -1-1-onto-> ( NN0  ^m  1o )
27 f1of 5665 . . . . 5  |-  ( ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) : NN0 -1-1-onto-> ( NN0  ^m  1o )  -> 
( a  e.  NN0  |->  ( 1o  X.  { a } ) ) : NN0 --> ( NN0  ^m  1o ) )
2826, 27mp1i 12 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
a  e.  NN0  |->  ( 1o 
X.  { a } ) ) : NN0 --> ( NN0  ^m  1o ) )
29 ovex 6097 . . . . 5  |-  ( NN0 
^m  1o )  e. 
_V
3029a1i 11 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( NN0  ^m  1o )  e. 
_V )
3123a1i 11 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  NN0  e.  _V )
32 inidm 3542 . . . 4  |-  ( ( NN0  ^m  1o )  i^i  ( NN0  ^m  1o ) )  =  ( NN0  ^m  1o )
3317, 21, 28, 30, 30, 31, 32ofco 6315 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
( F  o F 
.+  G )  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) )  =  ( ( F  o.  ( a  e. 
NN0  |->  ( 1o  X.  { a } ) ) )  o F 
.+  ( G  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) ) )
3412, 33eqtrd 2467 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
( F  .+b  G
)  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) )  =  ( ( F  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) )  o F  .+  ( G  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) ) )
352ply1rng 16630 . . . 4  |-  ( R  e.  Ring  ->  Y  e. 
Ring )
364, 7rngacl 15679 . . . 4  |-  ( ( Y  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .+b  G )  e.  B )
3735, 36syl3an1 1217 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .+b  G )  e.  B )
38 eqid 2435 . . . 4  |-  (coe1 `  ( F  .+b  G ) )  =  (coe1 `  ( F  .+b  G ) )
3938, 4, 2, 25coe1fval2 16596 . . 3  |-  ( ( F  .+b  G )  e.  B  ->  (coe1 `  ( F  .+b  G ) )  =  ( ( F 
.+b  G )  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) )
4037, 39syl 16 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .+b  G ) )  =  ( ( F  .+b  G )  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) )
41 eqid 2435 . . . . 5  |-  (coe1 `  F
)  =  (coe1 `  F
)
4241, 4, 2, 25coe1fval2 16596 . . . 4  |-  ( F  e.  B  ->  (coe1 `  F )  =  ( F  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) ) )
43423ad2ant2 979 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  F )  =  ( F  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) ) )
44 eqid 2435 . . . . 5  |-  (coe1 `  G
)  =  (coe1 `  G
)
4544, 4, 2, 25coe1fval2 16596 . . . 4  |-  ( G  e.  B  ->  (coe1 `  G )  =  ( G  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) ) )
46453ad2ant3 980 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  G )  =  ( G  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) ) )
4743, 46oveq12d 6090 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
(coe1 `  F )  o F  .+  (coe1 `  G
) )  =  ( ( F  o.  (
a  e.  NN0  |->  ( 1o 
X.  { a } ) ) )  o F  .+  ( G  o.  ( a  e. 
NN0  |->  ( 1o  X.  { a } ) ) ) ) )
4834, 40, 473eqtr4d 2477 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .+b  G ) )  =  ( (coe1 `  F )  o F 
.+  (coe1 `  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948   (/)c0 3620   {csn 3806    e. cmpt 4258    X. cxp 4867    o. ccom 4873    Fn wfn 5440   -->wf 5441   -1-1-onto->wf1o 5444   ` cfv 5445  (class class class)co 6072    o Fcof 6294   1oc1o 6708    ^m cmap 7009   NN0cn0 10210   Basecbs 13457   +g cplusg 13517   Ringcrg 15648   mPoly cmpl 16396  PwSer1cps1 16557  Poly1cpl1 16559  coe1cco1 16562
This theorem is referenced by:  coe1addfv  16646
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-ofr 6297  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-uz 10478  df-fz 11033  df-fzo 11124  df-seq 11312  df-hash 11607  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-0g 13715  df-gsum 13716  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-mhm 14726  df-submnd 14727  df-grp 14800  df-minusg 14801  df-mulg 14803  df-subg 14929  df-ghm 14992  df-cntz 15104  df-cmn 15402  df-abl 15403  df-mgp 15637  df-rng 15651  df-ur 15653  df-subrg 15854  df-psr 16405  df-mpl 16407  df-opsr 16413  df-psr1 16564  df-ply1 16566  df-coe1 16569
  Copyright terms: Public domain W3C validator