MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1add Structured version   Unicode version

Theorem coe1add 16662
Description: The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
coe1add.y  |-  Y  =  (Poly1 `  R )
coe1add.b  |-  B  =  ( Base `  Y
)
coe1add.p  |-  .+b  =  ( +g  `  Y )
coe1add.q  |-  .+  =  ( +g  `  R )
Assertion
Ref Expression
coe1add  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .+b  G ) )  =  ( (coe1 `  F )  o F 
.+  (coe1 `  G ) ) )

Proof of Theorem coe1add
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . . 5  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
2 coe1add.y . . . . . 6  |-  Y  =  (Poly1 `  R )
3 eqid 2438 . . . . . 6  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
4 coe1add.b . . . . . 6  |-  B  =  ( Base `  Y
)
52, 3, 4ply1bas 16598 . . . . 5  |-  B  =  ( Base `  ( 1o mPoly  R ) )
6 coe1add.q . . . . 5  |-  .+  =  ( +g  `  R )
7 coe1add.p . . . . . 6  |-  .+b  =  ( +g  `  Y )
82, 1, 7ply1plusg 16624 . . . . 5  |-  .+b  =  ( +g  `  ( 1o mPoly  R ) )
9 simp2 959 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  e.  B )
10 simp3 960 . . . . 5  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  e.  B )
111, 5, 6, 8, 9, 10mpladd 16510 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .+b  G )  =  ( F  o F 
.+  G ) )
1211coeq1d 5037 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
( F  .+b  G
)  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) )  =  ( ( F  o F  .+  G )  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) )
13 eqid 2438 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
142, 4, 13ply1basf 16605 . . . . . 6  |-  ( F  e.  B  ->  F : ( NN0  ^m  1o ) --> ( Base `  R
) )
15 ffn 5594 . . . . . 6  |-  ( F : ( NN0  ^m  1o ) --> ( Base `  R
)  ->  F  Fn  ( NN0  ^m  1o ) )
1614, 15syl 16 . . . . 5  |-  ( F  e.  B  ->  F  Fn  ( NN0  ^m  1o ) )
17163ad2ant2 980 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  F  Fn  ( NN0  ^m  1o ) )
182, 4, 13ply1basf 16605 . . . . . 6  |-  ( G  e.  B  ->  G : ( NN0  ^m  1o ) --> ( Base `  R
) )
19 ffn 5594 . . . . . 6  |-  ( G : ( NN0  ^m  1o ) --> ( Base `  R
)  ->  G  Fn  ( NN0  ^m  1o ) )
2018, 19syl 16 . . . . 5  |-  ( G  e.  B  ->  G  Fn  ( NN0  ^m  1o ) )
21203ad2ant3 981 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  G  Fn  ( NN0  ^m  1o ) )
22 df1o2 6739 . . . . . 6  |-  1o  =  { (/) }
23 nn0ex 10232 . . . . . 6  |-  NN0  e.  _V
24 0ex 4342 . . . . . 6  |-  (/)  e.  _V
25 eqid 2438 . . . . . 6  |-  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) )  =  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) )
2622, 23, 24, 25mapsnf1o3 7065 . . . . 5  |-  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) : NN0 -1-1-onto-> ( NN0  ^m  1o )
27 f1of 5677 . . . . 5  |-  ( ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) : NN0 -1-1-onto-> ( NN0  ^m  1o )  -> 
( a  e.  NN0  |->  ( 1o  X.  { a } ) ) : NN0 --> ( NN0  ^m  1o ) )
2826, 27mp1i 12 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
a  e.  NN0  |->  ( 1o 
X.  { a } ) ) : NN0 --> ( NN0  ^m  1o ) )
29 ovex 6109 . . . . 5  |-  ( NN0 
^m  1o )  e. 
_V
3029a1i 11 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( NN0  ^m  1o )  e. 
_V )
3123a1i 11 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  NN0  e.  _V )
32 inidm 3552 . . . 4  |-  ( ( NN0  ^m  1o )  i^i  ( NN0  ^m  1o ) )  =  ( NN0  ^m  1o )
3317, 21, 28, 30, 30, 31, 32ofco 6327 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
( F  o F 
.+  G )  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) )  =  ( ( F  o.  ( a  e. 
NN0  |->  ( 1o  X.  { a } ) ) )  o F 
.+  ( G  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) ) )
3412, 33eqtrd 2470 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
( F  .+b  G
)  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) )  =  ( ( F  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) )  o F  .+  ( G  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) ) )
352ply1rng 16647 . . . 4  |-  ( R  e.  Ring  ->  Y  e. 
Ring )
364, 7rngacl 15696 . . . 4  |-  ( ( Y  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .+b  G )  e.  B )
3735, 36syl3an1 1218 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  ( F  .+b  G )  e.  B )
38 eqid 2438 . . . 4  |-  (coe1 `  ( F  .+b  G ) )  =  (coe1 `  ( F  .+b  G ) )
3938, 4, 2, 25coe1fval2 16613 . . 3  |-  ( ( F  .+b  G )  e.  B  ->  (coe1 `  ( F  .+b  G ) )  =  ( ( F 
.+b  G )  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) )
4037, 39syl 16 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .+b  G ) )  =  ( ( F  .+b  G )  o.  ( a  e.  NN0  |->  ( 1o  X.  { a } ) ) ) )
41 eqid 2438 . . . . 5  |-  (coe1 `  F
)  =  (coe1 `  F
)
4241, 4, 2, 25coe1fval2 16613 . . . 4  |-  ( F  e.  B  ->  (coe1 `  F )  =  ( F  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) ) )
43423ad2ant2 980 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  F )  =  ( F  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) ) )
44 eqid 2438 . . . . 5  |-  (coe1 `  G
)  =  (coe1 `  G
)
4544, 4, 2, 25coe1fval2 16613 . . . 4  |-  ( G  e.  B  ->  (coe1 `  G )  =  ( G  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) ) )
46453ad2ant3 981 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  G )  =  ( G  o.  ( a  e.  NN0  |->  ( 1o 
X.  { a } ) ) ) )
4743, 46oveq12d 6102 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (
(coe1 `  F )  o F  .+  (coe1 `  G
) )  =  ( ( F  o.  (
a  e.  NN0  |->  ( 1o 
X.  { a } ) ) )  o F  .+  ( G  o.  ( a  e. 
NN0  |->  ( 1o  X.  { a } ) ) ) ) )
4834, 40, 473eqtr4d 2480 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .+b  G ) )  =  ( (coe1 `  F )  o F 
.+  (coe1 `  G ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958   (/)c0 3630   {csn 3816    e. cmpt 4269    X. cxp 4879    o. ccom 4885    Fn wfn 5452   -->wf 5453   -1-1-onto->wf1o 5456   ` cfv 5457  (class class class)co 6084    o Fcof 6306   1oc1o 6720    ^m cmap 7021   NN0cn0 10226   Basecbs 13474   +g cplusg 13534   Ringcrg 15665   mPoly cmpl 16413  PwSer1cps1 16574  Poly1cpl1 16576  coe1cco1 16579
This theorem is referenced by:  coe1addfv  16663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-ofr 6309  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-fzo 11141  df-seq 11329  df-hash 11624  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-0g 13732  df-gsum 13733  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-mhm 14743  df-submnd 14744  df-grp 14817  df-minusg 14818  df-mulg 14820  df-subg 14946  df-ghm 15009  df-cntz 15121  df-cmn 15419  df-abl 15420  df-mgp 15654  df-rng 15668  df-ur 15670  df-subrg 15871  df-psr 16422  df-mpl 16424  df-opsr 16430  df-psr1 16581  df-ply1 16583  df-coe1 16586
  Copyright terms: Public domain W3C validator