MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coftr Unicode version

Theorem coftr 7853
Description: If there is a cofinal map from  B to  A and another from  C to  A, then there is also a cofinal map from  C to  B. Proposition 11.9 of [TakeutiZaring] p. 102. A limited form of transitivity for the "cof" relation. This is really a lemma for cfcof 7854. (Contributed by Mario Carneiro, 16-Mar-2013.)
Hypothesis
Ref Expression
coftr.1  |-  H  =  ( t  e.  C  |-> 
|^| { n  e.  B  |  ( g `  t )  C_  (
f `  n ) } )
Assertion
Ref Expression
coftr  |-  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( E. g ( g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) )  ->  E. h
( h : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  (
h `  w )
) ) )
Distinct variable groups:    A, f,
g, s, w, x   
z, A, f, g, s, w    B, f, g, h, s, w    B, n, t, f, g, w    x, B, y, f, g, s, w    C, f, g, h, s, w    t, C    z, C    h, H, s, w   
y, n
Allowed substitution hints:    A( y, t, h, n)    B( z)    C( x, y, n)    H( x, y, z, t, f, g, n)

Proof of Theorem coftr
StepHypRef Expression
1 fdm 5317 . . . . . . . 8  |-  ( g : C --> A  ->  dom  g  =  C
)
2 vex 2760 . . . . . . . . 9  |-  g  e. 
_V
32dmex 4915 . . . . . . . 8  |-  dom  g  e.  _V
41, 3syl6eqelr 2345 . . . . . . 7  |-  ( g : C --> A  ->  C  e.  _V )
5 coftr.1 . . . . . . . . 9  |-  H  =  ( t  e.  C  |-> 
|^| { n  e.  B  |  ( g `  t )  C_  (
f `  n ) } )
6 fveq2 5444 . . . . . . . . . . . . 13  |-  ( t  =  w  ->  (
g `  t )  =  ( g `  w ) )
76sseq1d 3166 . . . . . . . . . . . 12  |-  ( t  =  w  ->  (
( g `  t
)  C_  ( f `  n )  <->  ( g `  w )  C_  (
f `  n )
) )
87rabbidv 2749 . . . . . . . . . . 11  |-  ( t  =  w  ->  { n  e.  B  |  (
g `  t )  C_  ( f `  n
) }  =  {
n  e.  B  | 
( g `  w
)  C_  ( f `  n ) } )
98inteqd 3827 . . . . . . . . . 10  |-  ( t  =  w  ->  |^| { n  e.  B  |  (
g `  t )  C_  ( f `  n
) }  =  |^| { n  e.  B  | 
( g `  w
)  C_  ( f `  n ) } )
109cbvmptv 4071 . . . . . . . . 9  |-  ( t  e.  C  |->  |^| { n  e.  B  |  (
g `  t )  C_  ( f `  n
) } )  =  ( w  e.  C  |-> 
|^| { n  e.  B  |  ( g `  w )  C_  (
f `  n ) } )
115, 10eqtri 2276 . . . . . . . 8  |-  H  =  ( w  e.  C  |-> 
|^| { n  e.  B  |  ( g `  w )  C_  (
f `  n ) } )
12 mptexg 5665 . . . . . . . 8  |-  ( C  e.  _V  ->  (
w  e.  C  |->  |^|
{ n  e.  B  |  ( g `  w )  C_  (
f `  n ) } )  e.  _V )
1311, 12syl5eqel 2340 . . . . . . 7  |-  ( C  e.  _V  ->  H  e.  _V )
144, 13syl 17 . . . . . 6  |-  ( g : C --> A  ->  H  e.  _V )
1514ad2antrl 711 . . . . 5  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  ->  H  e.  _V )
16 ffn 5313 . . . . . . . . 9  |-  ( f : B --> A  -> 
f  Fn  B )
17 smodm2 6326 . . . . . . . . 9  |-  ( ( f  Fn  B  /\  Smo  f )  ->  Ord  B )
1816, 17sylan 459 . . . . . . . 8  |-  ( ( f : B --> A  /\  Smo  f )  ->  Ord  B )
19183adant3 980 . . . . . . 7  |-  ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  Ord  B )
2019adantr 453 . . . . . 6  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  ->  Ord  B )
21 simpl3 965 . . . . . 6  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  ->  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y ) )
22 simprl 735 . . . . . 6  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  -> 
g : C --> A )
23 simpl1 963 . . . . . . . 8  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  w  e.  C )  ->  Ord  B )
24 simpl2 964 . . . . . . . . 9  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  w  e.  C )  ->  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)
25 ffvelrn 5583 . . . . . . . . . 10  |-  ( ( g : C --> A  /\  w  e.  C )  ->  ( g `  w
)  e.  A )
26253ad2antl3 1124 . . . . . . . . 9  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  w  e.  C )  ->  (
g `  w )  e.  A )
27 sseq1 3160 . . . . . . . . . . 11  |-  ( x  =  ( g `  w )  ->  (
x  C_  ( f `  y )  <->  ( g `  w )  C_  (
f `  y )
) )
2827rexbidv 2537 . . . . . . . . . 10  |-  ( x  =  ( g `  w )  ->  ( E. y  e.  B  x  C_  ( f `  y )  <->  E. y  e.  B  ( g `  w )  C_  (
f `  y )
) )
2928rcla4cv 2849 . . . . . . . . 9  |-  ( A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  ->  ( (
g `  w )  e.  A  ->  E. y  e.  B  ( g `  w )  C_  (
f `  y )
) )
3024, 26, 29sylc 58 . . . . . . . 8  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  w  e.  C )  ->  E. y  e.  B  ( g `  w )  C_  (
f `  y )
)
31 ssrab2 3219 . . . . . . . . . . . . . 14  |-  { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  C_  B
32 ordsson 4539 . . . . . . . . . . . . . 14  |-  ( Ord 
B  ->  B  C_  On )
3331, 32syl5ss 3151 . . . . . . . . . . . . 13  |-  ( Ord 
B  ->  { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  C_  On )
34 fveq2 5444 . . . . . . . . . . . . . . . 16  |-  ( n  =  y  ->  (
f `  n )  =  ( f `  y ) )
3534sseq2d 3167 . . . . . . . . . . . . . . 15  |-  ( n  =  y  ->  (
( g `  w
)  C_  ( f `  n )  <->  ( g `  w )  C_  (
f `  y )
) )
3635rcla4ev 2852 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) )  ->  E. n  e.  B  ( g `  w
)  C_  ( f `  n ) )
37 rabn0 3435 . . . . . . . . . . . . . 14  |-  ( { n  e.  B  | 
( g `  w
)  C_  ( f `  n ) }  =/=  (/)  <->  E. n  e.  B  ( g `  w ) 
C_  ( f `  n ) )
3836, 37sylibr 205 . . . . . . . . . . . . 13  |-  ( ( y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) )  ->  { n  e.  B  |  ( g `  w )  C_  (
f `  n ) }  =/=  (/) )
39 oninton 4549 . . . . . . . . . . . . 13  |-  ( ( { n  e.  B  |  ( g `  w )  C_  (
f `  n ) }  C_  On  /\  {
n  e.  B  | 
( g `  w
)  C_  ( f `  n ) }  =/=  (/) )  ->  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  e.  On )
4033, 38, 39syl2an 465 . . . . . . . . . . . 12  |-  ( ( Ord  B  /\  (
y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) ) )  ->  |^| { n  e.  B  |  ( g `
 w )  C_  ( f `  n
) }  e.  On )
41 eloni 4360 . . . . . . . . . . . 12  |-  ( |^| { n  e.  B  | 
( g `  w
)  C_  ( f `  n ) }  e.  On  ->  Ord  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) } )
4240, 41syl 17 . . . . . . . . . . 11  |-  ( ( Ord  B  /\  (
y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) ) )  ->  Ord  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) } )
43 simpl 445 . . . . . . . . . . 11  |-  ( ( Ord  B  /\  (
y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) ) )  ->  Ord  B )
4435intminss 3848 . . . . . . . . . . . 12  |-  ( ( y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) )  ->  |^| { n  e.  B  |  ( g `  w )  C_  (
f `  n ) }  C_  y )
4544adantl 454 . . . . . . . . . . 11  |-  ( ( Ord  B  /\  (
y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) ) )  ->  |^| { n  e.  B  |  ( g `
 w )  C_  ( f `  n
) }  C_  y
)
46 simprl 735 . . . . . . . . . . 11  |-  ( ( Ord  B  /\  (
y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) ) )  ->  y  e.  B
)
47 ordtr2 4394 . . . . . . . . . . . 12  |-  ( ( Ord  |^| { n  e.  B  |  ( g `
 w )  C_  ( f `  n
) }  /\  Ord  B )  ->  ( ( |^| { n  e.  B  |  ( g `  w )  C_  (
f `  n ) }  C_  y  /\  y  e.  B )  ->  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  e.  B
) )
4847imp 420 . . . . . . . . . . 11  |-  ( ( ( Ord  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  /\  Ord  B )  /\  ( |^| { n  e.  B  | 
( g `  w
)  C_  ( f `  n ) }  C_  y  /\  y  e.  B
) )  ->  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  e.  B
)
4942, 43, 45, 46, 48syl22anc 1188 . . . . . . . . . 10  |-  ( ( Ord  B  /\  (
y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) ) )  ->  |^| { n  e.  B  |  ( g `
 w )  C_  ( f `  n
) }  e.  B
)
5049exp32 591 . . . . . . . . 9  |-  ( Ord 
B  ->  ( y  e.  B  ->  ( ( g `  w ) 
C_  ( f `  y )  ->  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  e.  B
) ) )
5150rexlimdv 2639 . . . . . . . 8  |-  ( Ord 
B  ->  ( E. y  e.  B  (
g `  w )  C_  ( f `  y
)  ->  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  e.  B
) )
5223, 30, 51sylc 58 . . . . . . 7  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  w  e.  C )  ->  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  e.  B
)
5352, 11fmptd 5604 . . . . . 6  |-  ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  ->  H : C --> B )
5420, 21, 22, 53syl3anc 1187 . . . . 5  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  ->  H : C --> B )
55 simprr 736 . . . . . . . 8  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  ->  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w ) )
56 simpl1 963 . . . . . . . 8  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  -> 
f : B --> A )
57 ffvelrn 5583 . . . . . . . . . 10  |-  ( ( f : B --> A  /\  s  e.  B )  ->  ( f `  s
)  e.  A )
58 sseq1 3160 . . . . . . . . . . . 12  |-  ( z  =  ( f `  s )  ->  (
z  C_  ( g `  w )  <->  ( f `  s )  C_  (
g `  w )
) )
5958rexbidv 2537 . . . . . . . . . . 11  |-  ( z  =  ( f `  s )  ->  ( E. w  e.  C  z  C_  ( g `  w )  <->  E. w  e.  C  ( f `  s )  C_  (
g `  w )
) )
6059rcla4cv 2849 . . . . . . . . . 10  |-  ( A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
)  ->  ( (
f `  s )  e.  A  ->  E. w  e.  C  ( f `  s )  C_  (
g `  w )
) )
6157, 60syl5 30 . . . . . . . . 9  |-  ( A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
)  ->  ( (
f : B --> A  /\  s  e.  B )  ->  E. w  e.  C  ( f `  s
)  C_  ( g `  w ) ) )
6261expdimp 428 . . . . . . . 8  |-  ( ( A. z  e.  A  E. w  e.  C  z  C_  ( g `  w )  /\  f : B --> A )  -> 
( s  e.  B  ->  E. w  e.  C  ( f `  s
)  C_  ( g `  w ) ) )
6355, 56, 62syl2anc 645 . . . . . . 7  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  -> 
( s  e.  B  ->  E. w  e.  C  ( f `  s
)  C_  ( g `  w ) ) )
6456, 16syl 17 . . . . . . . 8  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  -> 
f  Fn  B )
65 simpl2 964 . . . . . . . 8  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  ->  Smo  f )
66 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  w  e.  C )  ->  w  e.  C )
6766, 52jca 520 . . . . . . . . . . . . . . 15  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  w  e.  C )  ->  (
w  e.  C  /\  |^|
{ n  e.  B  |  ( g `  w )  C_  (
f `  n ) }  e.  B )
)
6835elrab 2891 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  { n  e.  B  |  ( g `
 w )  C_  ( f `  n
) }  <->  ( y  e.  B  /\  (
g `  w )  C_  ( f `  y
) ) )
69 sstr2 3147 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f `  s ) 
C_  ( g `  w )  ->  (
( g `  w
)  C_  ( f `  y )  ->  (
f `  s )  C_  ( f `  y
) ) )
70 smoword 6337 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  ( s  e.  B  /\  y  e.  B
) )  ->  (
s  C_  y  <->  ( f `  s )  C_  (
f `  y )
) )
7170biimprd 216 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  ( s  e.  B  /\  y  e.  B
) )  ->  (
( f `  s
)  C_  ( f `  y )  ->  s  C_  y ) )
7269, 71syl9r 69 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  ( s  e.  B  /\  y  e.  B
) )  ->  (
( f `  s
)  C_  ( g `  w )  ->  (
( g `  w
)  C_  ( f `  y )  ->  s  C_  y ) ) )
7372expr 601 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  s  e.  B )  ->  ( y  e.  B  ->  ( ( f `  s )  C_  (
g `  w )  ->  ( ( g `  w )  C_  (
f `  y )  ->  s  C_  y )
) ) )
7473com23 74 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  s  e.  B )  ->  ( ( f `  s )  C_  (
g `  w )  ->  ( y  e.  B  ->  ( ( g `  w )  C_  (
f `  y )  ->  s  C_  y )
) ) )
7574imp4b 576 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( f  Fn  B  /\  Smo  f
)  /\  s  e.  B )  /\  (
f `  s )  C_  ( g `  w
) )  ->  (
( y  e.  B  /\  ( g `  w
)  C_  ( f `  y ) )  -> 
s  C_  y )
)
7668, 75syl5bi 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( f  Fn  B  /\  Smo  f
)  /\  s  e.  B )  /\  (
f `  s )  C_  ( g `  w
) )  ->  (
y  e.  { n  e.  B  |  (
g `  w )  C_  ( f `  n
) }  ->  s  C_  y ) )
7776ralrimiv 2598 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( f  Fn  B  /\  Smo  f
)  /\  s  e.  B )  /\  (
f `  s )  C_  ( g `  w
) )  ->  A. y  e.  { n  e.  B  |  ( g `  w )  C_  (
f `  n ) } s  C_  y
)
78 ssint 3838 . . . . . . . . . . . . . . . . 17  |-  ( s 
C_  |^| { n  e.  B  |  ( g `
 w )  C_  ( f `  n
) }  <->  A. y  e.  { n  e.  B  |  ( g `  w )  C_  (
f `  n ) } s  C_  y
)
7977, 78sylibr 205 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f  Fn  B  /\  Smo  f
)  /\  s  e.  B )  /\  (
f `  s )  C_  ( g `  w
) )  ->  s  C_ 
|^| { n  e.  B  |  ( g `  w )  C_  (
f `  n ) } )
809, 5fvmptg 5520 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  C  /\  |^|
{ n  e.  B  |  ( g `  w )  C_  (
f `  n ) }  e.  B )  ->  ( H `  w
)  =  |^| { n  e.  B  |  (
g `  w )  C_  ( f `  n
) } )
8180sseq2d 3167 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  C  /\  |^|
{ n  e.  B  |  ( g `  w )  C_  (
f `  n ) }  e.  B )  ->  ( s  C_  ( H `  w )  <->  s 
C_  |^| { n  e.  B  |  ( g `
 w )  C_  ( f `  n
) } ) )
8279, 81syl5ibrcom 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f  Fn  B  /\  Smo  f
)  /\  s  e.  B )  /\  (
f `  s )  C_  ( g `  w
) )  ->  (
( w  e.  C  /\  |^| { n  e.  B  |  ( g `
 w )  C_  ( f `  n
) }  e.  B
)  ->  s  C_  ( H `  w ) ) )
8367, 82syl5 30 . . . . . . . . . . . . . 14  |-  ( ( ( ( f  Fn  B  /\  Smo  f
)  /\  s  e.  B )  /\  (
f `  s )  C_  ( g `  w
) )  ->  (
( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y )  /\  g : C --> A )  /\  w  e.  C )  ->  s  C_  ( H `  w ) ) )
8483ex 425 . . . . . . . . . . . . 13  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  s  e.  B )  ->  ( ( f `  s )  C_  (
g `  w )  ->  ( ( ( Ord 
B  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )  /\  g : C --> A )  /\  w  e.  C
)  ->  s  C_  ( H `  w ) ) ) )
8584com23 74 . . . . . . . . . . . 12  |-  ( ( ( f  Fn  B  /\  Smo  f )  /\  s  e.  B )  ->  ( ( ( Ord 
B  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )  /\  g : C --> A )  /\  w  e.  C
)  ->  ( (
f `  s )  C_  ( g `  w
)  ->  s  C_  ( H `  w ) ) ) )
8685expdimp 428 . . . . . . . . . . 11  |-  ( ( ( ( f  Fn  B  /\  Smo  f
)  /\  s  e.  B )  /\  ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )  /\  g : C --> A ) )  ->  ( w  e.  C  ->  ( ( f `  s ) 
C_  ( g `  w )  ->  s  C_  ( H `  w
) ) ) )
8786reximdvai 2626 . . . . . . . . . 10  |-  ( ( ( ( f  Fn  B  /\  Smo  f
)  /\  s  e.  B )  /\  ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )  /\  g : C --> A ) )  ->  ( E. w  e.  C  (
f `  s )  C_  ( g `  w
)  ->  E. w  e.  C  s  C_  ( H `  w ) ) )
8887ancoms 441 . . . . . . . . 9  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  (
( f  Fn  B  /\  Smo  f )  /\  s  e.  B )
)  ->  ( E. w  e.  C  (
f `  s )  C_  ( g `  w
)  ->  E. w  e.  C  s  C_  ( H `  w ) ) )
8988expr 601 . . . . . . . 8  |-  ( ( ( Ord  B  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
)  /\  g : C
--> A )  /\  (
f  Fn  B  /\  Smo  f ) )  -> 
( s  e.  B  ->  ( E. w  e.  C  ( f `  s )  C_  (
g `  w )  ->  E. w  e.  C  s  C_  ( H `  w ) ) ) )
9020, 21, 22, 64, 65, 89syl32anc 1195 . . . . . . 7  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  -> 
( s  e.  B  ->  ( E. w  e.  C  ( f `  s )  C_  (
g `  w )  ->  E. w  e.  C  s  C_  ( H `  w ) ) ) )
9163, 90mpdd 38 . . . . . 6  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  -> 
( s  e.  B  ->  E. w  e.  C  s  C_  ( H `  w ) ) )
9291ralrimiv 2598 . . . . 5  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  ->  A. s  e.  B  E. w  e.  C  s  C_  ( H `  w ) )
93 feq1 5299 . . . . . . . 8  |-  ( h  =  H  ->  (
h : C --> B  <->  H : C
--> B ) )
94 fveq1 5443 . . . . . . . . . . 11  |-  ( h  =  H  ->  (
h `  w )  =  ( H `  w ) )
9594sseq2d 3167 . . . . . . . . . 10  |-  ( h  =  H  ->  (
s  C_  ( h `  w )  <->  s  C_  ( H `  w ) ) )
9695rexbidv 2537 . . . . . . . . 9  |-  ( h  =  H  ->  ( E. w  e.  C  s  C_  ( h `  w )  <->  E. w  e.  C  s  C_  ( H `  w ) ) )
9796ralbidv 2536 . . . . . . . 8  |-  ( h  =  H  ->  ( A. s  e.  B  E. w  e.  C  s  C_  ( h `  w )  <->  A. s  e.  B  E. w  e.  C  s  C_  ( H `  w ) ) )
9893, 97anbi12d 694 . . . . . . 7  |-  ( h  =  H  ->  (
( h : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  (
h `  w )
)  <->  ( H : C
--> B  /\  A. s  e.  B  E. w  e.  C  s  C_  ( H `  w ) ) ) )
9998cla4egv 2837 . . . . . 6  |-  ( H  e.  _V  ->  (
( H : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  ( H `  w )
)  ->  E. h
( h : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  (
h `  w )
) ) )
100993impib 1154 . . . . 5  |-  ( ( H  e.  _V  /\  H : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  ( H `  w
) )  ->  E. h
( h : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  (
h `  w )
) )
10115, 54, 92, 100syl3anc 1187 . . . 4  |-  ( ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  ( f `  y
) )  /\  (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) ) )  ->  E. h ( h : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  ( h `  w
) ) )
102101ex 425 . . 3  |-  ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( (
g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) )  ->  E. h
( h : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  (
h `  w )
) ) )
103102exlimdv 1933 . 2  |-  ( ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( E. g ( g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) )  ->  E. h
( h : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  (
h `  w )
) ) )
104103exlimiv 2024 1  |-  ( E. f ( f : B --> A  /\  Smo  f  /\  A. x  e.  A  E. y  e.  B  x  C_  (
f `  y )
)  ->  ( E. g ( g : C --> A  /\  A. z  e.  A  E. w  e.  C  z  C_  ( g `  w
) )  ->  E. h
( h : C --> B  /\  A. s  e.  B  E. w  e.  C  s  C_  (
h `  w )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   E.wrex 2517   {crab 2520   _Vcvv 2757    C_ wss 3113   (/)c0 3416   |^|cint 3822    e. cmpt 4037   Ord word 4349   Oncon0 4350   dom cdm 4647    Fn wfn 4654   -->wf 4655   ` cfv 4659   Smo wsmo 6316
This theorem is referenced by:  cfcof  7854
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-smo 6317
  Copyright terms: Public domain W3C validator