Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinbtwnle Unicode version

Theorem colinbtwnle 24151
Description: Given three colinear points  A,  B, and  C,  B falls in the middle iff the two segments to 
B are no longer than  A C. Theorem 5.12 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinbtwnle  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >.  ->  ( B  Btwn  <. A ,  C >.  <-> 
( <. A ,  B >. 
Seg<_ 
<. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. ) ) ) )

Proof of Theorem colinbtwnle
StepHypRef Expression
1 btwnsegle 24150 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >.  ->  <. A ,  B >.  Seg<_  <. A ,  C >. ) )
2 3anrev 945 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  <->  ( C  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )
3 btwnsegle 24150 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. C ,  A >.  ->  <. C ,  B >.  Seg<_  <. C ,  A >. ) )
42, 3sylan2b 461 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. C ,  A >.  ->  <. C ,  B >.  Seg<_  <. C ,  A >. ) )
5 3ancoma 941 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  <->  ( B  e.  ( EE `  N
)  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
6 btwncom 24047 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
75, 6sylan2b 461 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >. 
<->  B  Btwn  <. C ,  A >. ) )
8 simpl 443 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  N  e.  NN )
9 simpr2 962 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
10 simpr3 963 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
118, 9, 10cgrrflx2d 24017 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  <. B ,  C >.Cgr <. C ,  B >. )
12 simpr1 961 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
138, 12, 10cgrrflx2d 24017 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  <. A ,  C >.Cgr <. C ,  A >. )
14 seglecgr12 24144 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  B  e.  ( EE
`  N )  /\  C  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  A  e.  ( EE `  N ) ) )  ->  (
( <. B ,  C >.Cgr
<. C ,  B >.  /\ 
<. A ,  C >.Cgr <. C ,  A >. )  ->  ( <. B ,  C >.  Seg<_  <. A ,  C >.  <->  <. C ,  B >.  Seg<_  <. C ,  A >. ) ) )
158, 9, 10, 12, 10, 10, 9, 10, 12, 14syl333anc 1214 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( <. B ,  C >.Cgr <. C ,  B >.  /\  <. A ,  C >.Cgr
<. C ,  A >. )  ->  ( <. B ,  C >.  Seg<_  <. A ,  C >.  <->  <. C ,  B >.  Seg<_  <. C ,  A >. ) ) )
1611, 13, 15mp2and 660 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. B ,  C >. 
Seg<_ 
<. A ,  C >.  <->  <. C ,  B >.  Seg<_  <. C ,  A >. ) )
174, 7, 163imtr4d 259 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >.  ->  <. B ,  C >.  Seg<_  <. A ,  C >. ) )
181, 17jcad 519 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. A ,  C >.  ->  ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\  <. B ,  C >.  Seg<_  <. A ,  C >. ) ) )
1918adantr 451 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A  Colinear  <. B ,  C >. )  ->  ( B  Btwn  <. A ,  C >.  -> 
( <. A ,  B >. 
Seg<_ 
<. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. ) ) )
20 brcolinear 24092 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
21 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  A  Btwn  <. B ,  C >. )
228, 12, 9, 10, 21btwncomand 24048 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  A  Btwn  <. C ,  B >. )
2316biimpa 470 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  <. B ,  C >.  Seg<_  <. A ,  C >. )  ->  <. C ,  B >.  Seg<_  <. C ,  A >. )
2423adantrl 696 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  <. C ,  B >.  Seg<_  <. C ,  A >. )
25 btwncom 24047 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  C >. 
<->  A  Btwn  <. C ,  B >. ) )
26 3anrot 939 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
27 btwnsegle 24150 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. C ,  B >.  ->  <. C ,  A >.  Seg<_  <. C ,  B >. ) )
2826, 27sylan2br 462 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. C ,  B >.  ->  <. C ,  A >.  Seg<_  <. C ,  B >. ) )
2925, 28sylbid 206 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  C >.  ->  <. C ,  A >.  Seg<_  <. C ,  B >. ) )
3029imp 418 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A  Btwn  <. B ,  C >. )  ->  <. C ,  A >.  Seg<_  <. C ,  B >. )
3130adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  <. C ,  A >.  Seg<_  <. C ,  B >. )
32 segleantisym 24148 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )  ->  ( ( <. C ,  B >.  Seg<_  <. C ,  A >.  /\ 
<. C ,  A >.  Seg<_  <. C ,  B >. )  ->  <. C ,  B >.Cgr
<. C ,  A >. ) )
338, 10, 9, 10, 12, 32syl122anc 1191 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( <. C ,  B >.  Seg<_  <. C ,  A >.  /\  <. C ,  A >. 
Seg<_ 
<. C ,  B >. )  ->  <. C ,  B >.Cgr
<. C ,  A >. ) )
3433adantr 451 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  ( ( <. C ,  B >.  Seg<_  <. C ,  A >.  /\ 
<. C ,  A >.  Seg<_  <. C ,  B >. )  ->  <. C ,  B >.Cgr
<. C ,  A >. ) )
3524, 31, 34mp2and 660 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  <. C ,  B >.Cgr <. C ,  A >. )
368, 10, 9, 12, 22, 35endofsegidand 24119 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  B  =  A )
37 btwntriv1 24049 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  A  Btwn  <. A ,  C >. )
38373adant3r2 1161 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  A  Btwn  <. A ,  C >. )
39 breq1 4027 . . . . . . . . . . . 12  |-  ( B  =  A  ->  ( B  Btwn  <. A ,  C >.  <-> 
A  Btwn  <. A ,  C >. ) )
4038, 39syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  =  A  ->  B  Btwn  <. A ,  C >. ) )
4140adantr 451 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  ( B  =  A  ->  B  Btwn  <. A ,  C >. ) )
4236, 41mpd 14 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( A  Btwn  <. B ,  C >.  /\  <. B ,  C >. 
Seg<_ 
<. A ,  C >. ) )  ->  B  Btwn  <. A ,  C >. )
4342expr 598 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A  Btwn  <. B ,  C >. )  ->  ( <. B ,  C >.  Seg<_  <. A ,  C >.  ->  B  Btwn  <. A ,  C >. ) )
4443adantld 453 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A  Btwn  <. B ,  C >. )  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. )  ->  B  Btwn  <. A ,  C >. ) )
4544ex 423 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Btwn  <. B ,  C >.  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. )  ->  B  Btwn  <. A ,  C >. ) ) )
467biimprd 214 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. C ,  A >.  ->  B  Btwn  <. A ,  C >. ) )
4746a1dd 42 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Btwn  <. C ,  A >.  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. )  ->  B  Btwn  <. A ,  C >. ) ) )
48 simprl 732 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( C  Btwn  <. A ,  B >.  /\  <. A ,  B >. 
Seg<_ 
<. A ,  C >. ) )  ->  C  Btwn  <. A ,  B >. )
49 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( C  Btwn  <. A ,  B >.  /\  <. A ,  B >. 
Seg<_ 
<. A ,  C >. ) )  ->  <. A ,  B >.  Seg<_  <. A ,  C >. )
50 3ancomb 943 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  <->  ( A  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
51 btwnsegle 24150 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  <. A ,  C >.  Seg<_  <. A ,  B >. ) )
5250, 51sylan2b 461 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  <. A ,  C >.  Seg<_  <. A ,  B >. ) )
5352imp 418 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  C  Btwn  <. A ,  B >. )  ->  <. A ,  C >.  Seg<_  <. A ,  B >. )
5453adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( C  Btwn  <. A ,  B >.  /\  <. A ,  B >. 
Seg<_ 
<. A ,  C >. ) )  ->  <. A ,  C >.  Seg<_  <. A ,  B >. )
55 segleantisym 24148 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. A ,  C >.  Seg<_  <. A ,  B >. )  ->  <. A ,  B >.Cgr
<. A ,  C >. ) )
568, 12, 9, 12, 10, 55syl122anc 1191 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\  <. A ,  C >. 
Seg<_ 
<. A ,  B >. )  ->  <. A ,  B >.Cgr
<. A ,  C >. ) )
5756adantr 451 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( C  Btwn  <. A ,  B >.  /\  <. A ,  B >. 
Seg<_ 
<. A ,  C >. ) )  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. A ,  C >.  Seg<_  <. A ,  B >. )  ->  <. A ,  B >.Cgr
<. A ,  C >. ) )
5849, 54, 57mp2and 660 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( C  Btwn  <. A ,  B >.  /\  <. A ,  B >. 
Seg<_ 
<. A ,  C >. ) )  ->  <. A ,  B >.Cgr <. A ,  C >. )
598, 12, 9, 10, 48, 58endofsegidand 24119 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( C  Btwn  <. A ,  B >.  /\  <. A ,  B >. 
Seg<_ 
<. A ,  C >. ) )  ->  B  =  C )
60 btwntriv2 24045 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  C  Btwn  <. A ,  C >. )
61603adant3r2 1161 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  C  Btwn  <. A ,  C >. )
62 breq1 4027 . . . . . . . . . . . 12  |-  ( B  =  C  ->  ( B  Btwn  <. A ,  C >.  <-> 
C  Btwn  <. A ,  C >. ) )
6361, 62syl5ibrcom 213 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  =  C  ->  B  Btwn  <. A ,  C >. ) )
6463adantr 451 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( C  Btwn  <. A ,  B >.  /\  <. A ,  B >. 
Seg<_ 
<. A ,  C >. ) )  ->  ( B  =  C  ->  B  Btwn  <. A ,  C >. ) )
6559, 64mpd 14 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  ( C  Btwn  <. A ,  B >.  /\  <. A ,  B >. 
Seg<_ 
<. A ,  C >. ) )  ->  B  Btwn  <. A ,  C >. )
6665expr 598 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  C  Btwn  <. A ,  B >. )  ->  ( <. A ,  B >.  Seg<_  <. A ,  C >.  ->  B  Btwn  <. A ,  C >. ) )
6766adantrd 454 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  C  Btwn  <. A ,  B >. )  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. )  ->  B  Btwn  <. A ,  C >. ) )
6867ex 423 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A ,  B >.  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. )  ->  B  Btwn  <. A ,  C >. ) ) )
6945, 47, 683jaod 1246 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. )  ->  B  Btwn  <. A ,  C >. ) ) )
7020, 69sylbid 206 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >.  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. )  ->  B  Btwn  <. A ,  C >. ) ) )
7170imp 418 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A  Colinear  <. B ,  C >. )  ->  ( ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. )  ->  B  Btwn  <. A ,  C >. ) )
7219, 71impbid 183 . 2  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A  Colinear  <. B ,  C >. )  ->  ( B  Btwn  <. A ,  C >.  <->  ( <. A ,  B >.  Seg<_  <. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. ) ) )
7372ex 423 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >.  ->  ( B  Btwn  <. A ,  C >.  <-> 
( <. A ,  B >. 
Seg<_ 
<. A ,  C >.  /\ 
<. B ,  C >.  Seg<_  <. A ,  C >. ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1623    e. wcel 1685   <.cop 3644   class class class wbr 4024   ` cfv 5221   NNcn 9742   EEcee 23926    Btwn cbtwn 23927  Cgrccgr 23928    Colinear ccolin 24070    Seg<_ csegle 24139
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-oi 7221  df-card 7568  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-rp 10351  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-seq 11043  df-exp 11101  df-hash 11334  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-clim 11958  df-sum 12155  df-ee 23929  df-btwn 23930  df-cgr 23931  df-ofs 24016  df-ifs 24072  df-cgr3 24073  df-colinear 24074  df-segle 24140
  Copyright terms: Public domain W3C validator