Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinearperm3 Unicode version

Theorem colinearperm3 24061
Description: Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
colinearperm3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  B  Colinear  <. C ,  A >. ) )

Proof of Theorem colinearperm3
StepHypRef Expression
1 3orrot 945 . . 3  |-  ( ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  <->  ( B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  C >. ) )
21a1i 12 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. )  <-> 
( B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  C >. ) ) )
3 brcolinear 24057 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  ( A  Btwn  <. B ,  C >.  \/  B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >. ) ) )
4 3anrot 944 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  <->  ( B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) ) )
5 brcolinear 24057 . . 3  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( B  Colinear  <. C ,  A >. 
<->  ( B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  C >. ) ) )
64, 5sylan2b 463 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( B  Colinear  <. C ,  A >. 
<->  ( B  Btwn  <. C ,  A >.  \/  C  Btwn  <. A ,  B >.  \/  A  Btwn  <. B ,  C >. ) ) )
72, 3, 63bitr4d 278 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( A  Colinear  <. B ,  C >. 
<->  B  Colinear  <. C ,  A >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    \/ w3o 938    /\ w3a 939    e. wcel 1621   <.cop 3617   class class class wbr 3997   ` cfv 4673   NNcn 9714   EEcee 23891    Btwn cbtwn 23892    Colinear ccolin 24035
This theorem is referenced by:  colinearperm2  24062  colinearperm4  24063  btwncolinear4  24070
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-xp 4675  df-rel 4676  df-cnv 4677  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fv 4689  df-oprab 5796  df-colinear 24039
  Copyright terms: Public domain W3C validator