Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  com2i Unicode version

Theorem com2i 24828
Description: Property of a commutative structure with two operation. (Contributed by FL, 14-Feb-2010.)
Hypotheses
Ref Expression
com2i.1  |-  G  =  ( 1st `  R
)
com2i.2  |-  H  =  ( 2nd `  R
)
com2i.3  |-  X  =  ran  G
Assertion
Ref Expression
com2i  |-  ( R  e.  Com2  ->  A. a  e.  X  A. b  e.  X  ( a H b )  =  ( b H a ) )
Distinct variable groups:    R, a,
b    X, a, b
Allowed substitution hints:    G( a, b)    H( a, b)

Proof of Theorem com2i
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 com2i.1 . . . . . 6  |-  G  =  ( 1st `  R
)
21eqcomi 2287 . . . . 5  |-  ( 1st `  R )  =  G
32eqeq2i 2293 . . . 4  |-  ( g  =  ( 1st `  R
)  <->  g  =  G )
4 rneq 4904 . . . . . 6  |-  ( g  =  G  ->  ran  g  =  ran  G )
5 com2i.3 . . . . . 6  |-  X  =  ran  G
64, 5syl6eqr 2333 . . . . 5  |-  ( g  =  G  ->  ran  g  =  X )
7 raleq 2736 . . . . . 6  |-  ( ran  g  =  X  -> 
( A. b  e. 
ran  g ( a h b )  =  ( b h a )  <->  A. b  e.  X  ( a h b )  =  ( b h a ) ) )
87raleqbi1dv 2744 . . . . 5  |-  ( ran  g  =  X  -> 
( A. a  e. 
ran  g A. b  e.  ran  g ( a h b )  =  ( b h a )  <->  A. a  e.  X  A. b  e.  X  ( a h b )  =  ( b h a ) ) )
96, 8syl 15 . . . 4  |-  ( g  =  G  ->  ( A. a  e.  ran  g A. b  e.  ran  g ( a h b )  =  ( b h a )  <->  A. a  e.  X  A. b  e.  X  ( a h b )  =  ( b h a ) ) )
103, 9sylbi 187 . . 3  |-  ( g  =  ( 1st `  R
)  ->  ( A. a  e.  ran  g A. b  e.  ran  g ( a h b )  =  ( b h a )  <->  A. a  e.  X  A. b  e.  X  ( a
h b )  =  ( b h a ) ) )
11 com2i.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
1211eqcomi 2287 . . . . . 6  |-  ( 2nd `  R )  =  H
1312eqeq2i 2293 . . . . 5  |-  ( h  =  ( 2nd `  R
)  <->  h  =  H
)
14 oveq 5864 . . . . . 6  |-  ( h  =  H  ->  (
a h b )  =  ( a H b ) )
15 oveq 5864 . . . . . 6  |-  ( h  =  H  ->  (
b h a )  =  ( b H a ) )
1614, 15eqeq12d 2297 . . . . 5  |-  ( h  =  H  ->  (
( a h b )  =  ( b h a )  <->  ( a H b )  =  ( b H a ) ) )
1713, 16sylbi 187 . . . 4  |-  ( h  =  ( 2nd `  R
)  ->  ( (
a h b )  =  ( b h a )  <->  ( a H b )  =  ( b H a ) ) )
18172ralbidv 2585 . . 3  |-  ( h  =  ( 2nd `  R
)  ->  ( A. a  e.  X  A. b  e.  X  (
a h b )  =  ( b h a )  <->  A. a  e.  X  A. b  e.  X  ( a H b )  =  ( b H a ) ) )
1910, 18elopabi 6185 . 2  |-  ( R  e.  { <. g ,  h >.  |  A. a  e.  ran  g A. b  e.  ran  g ( a h b )  =  ( b h a ) }  ->  A. a  e.  X  A. b  e.  X  (
a H b )  =  ( b H a ) )
20 df-com2 21078 . 2  |-  Com2  =  { <. g ,  h >.  |  A. a  e. 
ran  g A. b  e.  ran  g ( a h b )  =  ( b h a ) }
2119, 20eleq2s 2375 1  |-  ( R  e.  Com2  ->  A. a  e.  X  A. b  e.  X  ( a H b )  =  ( b H a ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   A.wral 2543   {copab 4076   ran crn 4690   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   Com2ccm2 21077
This theorem is referenced by:  fldi  24839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-1st 6122  df-2nd 6123  df-com2 21078
  Copyright terms: Public domain W3C validator