Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  con3ALTVD Unicode version

Theorem con3ALTVD 27705
Description: The following User's Proof is a Natural Deduction Sequent Calculus transcription of the Fitch-style Natural Deduction proof of Theorem 7 of Section 14 of [Margaris] p. 60 ( which is con3 128). The same proof may also be interpreted to be a Virtual Deduction Hilbert-style axiomatic proof. It was completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con3ALT 27309 is con3ALTVD 27705 without virtual deductions and was automatically derived from con3ALTVD 27705. Step i of the User's Proof corresponds to step i of the Fitch-style proof.
1::  |-  (. ( ph  ->  ps )  ->.  ( ph  ->  ps ) ).
2::  |-  (. ( ph  ->  ps ) ,. -.  -.  ph  ->.  -.  -.  ph ).
3::  |-  ( -.  -.  ph  ->  ph )
4:2:  |-  (. ( ph  ->  ps ) ,. -.  -.  ph  ->.  ph ).
5:1,4:  |-  (. ( ph  ->  ps ) ,. -.  -.  ph  ->.  ps ).
6::  |-  ( ps  ->  -.  -.  ps )
7:6,5:  |-  (. ( ph  ->  ps ) ,. -.  -.  ph  ->.  -.  -.  ps ).
8:7:  |-  (. ( ph  ->  ps )  ->.  ( -.  -.  ph  ->  -.  -.  ps  ) ).
9::  |-  ( ( -.  -.  ph  ->  -.  -.  ps )  ->  ( -.  ps  ->  -.  ph ) )
10:8:  |-  (. ( ph  ->  ps )  ->.  ( -.  ps  ->  -.  ph ) ).
qed:10:  |-  ( ( ph  ->  ps )  ->  ( -.  ps  ->  -.  ph ) )
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
con3ALTVD  |-  ( (
ph  ->  ps )  -> 
( -.  ps  ->  -. 
ph ) )

Proof of Theorem con3ALTVD
StepHypRef Expression
1 idn1 27358 . . . . . 6  |-  (. ( ph  ->  ps )  ->.  ( ph  ->  ps ) ).
2 idn2 27398 . . . . . . 7  |-  (. ( ph  ->  ps ) ,. 
-.  -.  ph  ->.  -.  -.  ph ).
3 notnot2 106 . . . . . . 7  |-  ( -. 
-.  ph  ->  ph )
42, 3e2 27416 . . . . . 6  |-  (. ( ph  ->  ps ) ,. 
-.  -.  ph  ->.  ph ).
5 id 21 . . . . . 6  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
61, 4, 5e12 27512 . . . . 5  |-  (. ( ph  ->  ps ) ,. 
-.  -.  ph  ->.  ps ).
7 notnot1 116 . . . . 5  |-  ( ps 
->  -.  -.  ps )
86, 7e2 27416 . . . 4  |-  (. ( ph  ->  ps ) ,. 
-.  -.  ph  ->.  -.  -.  ps ).
98in2 27390 . . 3  |-  (. ( ph  ->  ps )  ->.  ( -.  -.  ph  ->  -.  -.  ps ) ).
10 ax-3 9 . . 3  |-  ( ( -.  -.  ph  ->  -. 
-.  ps )  ->  ( -.  ps  ->  -.  ph )
)
119, 10e1_ 27412 . 2  |-  (. ( ph  ->  ps )  ->.  ( -.  ps  ->  -.  ph ) ).
1211in1 27355 1  |-  ( (
ph  ->  ps )  -> 
( -.  ps  ->  -. 
ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-an 362  df-vd1 27354  df-vd2 27363
  Copyright terms: Public domain W3C validator