MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjmul Unicode version

Theorem conjmul 9691
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 12-Nov-2006.)
Assertion
Ref Expression
conjmul  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )

Proof of Theorem conjmul
StepHypRef Expression
1 simpll 731 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  ->  P  e.  CC )
2 simprl 733 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  ->  Q  e.  CC )
3 reccl 9645 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( 1  /  P
)  e.  CC )
43adantr 452 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  /  P
)  e.  CC )
51, 2, 4mul32d 9236 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  P ) )  =  ( ( P  x.  ( 1  /  P ) )  x.  Q ) )
6 recid 9652 . . . . . . . 8  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( P  x.  (
1  /  P ) )  =  1 )
76oveq1d 6059 . . . . . . 7  |-  ( ( P  e.  CC  /\  P  =/=  0 )  -> 
( ( P  x.  ( 1  /  P
) )  x.  Q
)  =  ( 1  x.  Q ) )
87adantr 452 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  ( 1  /  P
) )  x.  Q
)  =  ( 1  x.  Q ) )
9 mulid2 9049 . . . . . . 7  |-  ( Q  e.  CC  ->  (
1  x.  Q )  =  Q )
109ad2antrl 709 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  x.  Q
)  =  Q )
115, 8, 103eqtrd 2444 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  P ) )  =  Q )
12 reccl 9645 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( 1  /  Q
)  e.  CC )
1312adantl 453 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( 1  /  Q
)  e.  CC )
141, 2, 13mulassd 9071 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  Q ) )  =  ( P  x.  ( Q  x.  ( 1  /  Q
) ) ) )
15 recid 9652 . . . . . . . 8  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( Q  x.  (
1  /  Q ) )  =  1 )
1615oveq2d 6060 . . . . . . 7  |-  ( ( Q  e.  CC  /\  Q  =/=  0 )  -> 
( P  x.  ( Q  x.  ( 1  /  Q ) ) )  =  ( P  x.  1 ) )
1716adantl 453 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  ( Q  x.  ( 1  /  Q ) ) )  =  ( P  x.  1 ) )
18 mulid1 9048 . . . . . . 7  |-  ( P  e.  CC  ->  ( P  x.  1 )  =  P )
1918ad2antrr 707 . . . . . 6  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  1 )  =  P )
2014, 17, 193eqtrd 2444 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
1  /  Q ) )  =  P )
2111, 20oveq12d 6062 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( 1  /  P
) )  +  ( ( P  x.  Q
)  x.  ( 1  /  Q ) ) )  =  ( Q  +  P ) )
22 mulcl 9034 . . . . . 6  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  x.  Q
)  e.  CC )
2322ad2ant2r 728 . . . . 5  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  Q
)  e.  CC )
2423, 4, 13adddid 9072 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
( 1  /  P
)  +  ( 1  /  Q ) ) )  =  ( ( ( P  x.  Q
)  x.  ( 1  /  P ) )  +  ( ( P  x.  Q )  x.  ( 1  /  Q
) ) ) )
25 addcom 9212 . . . . 5  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( P  +  Q
)  =  ( Q  +  P ) )
2625ad2ant2r 728 . . . 4  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  +  Q
)  =  ( Q  +  P ) )
2721, 24, 263eqtr4d 2450 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  (
( 1  /  P
)  +  ( 1  /  Q ) ) )  =  ( P  +  Q ) )
2822mulid1d 9065 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
2928ad2ant2r 728 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  x.  Q )  x.  1 )  =  ( P  x.  Q ) )
3027, 29eqeq12d 2422 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q
)  x.  1 )  <-> 
( P  +  Q
)  =  ( P  x.  Q ) ) )
31 addcl 9032 . . . 4  |-  ( ( ( 1  /  P
)  e.  CC  /\  ( 1  /  Q
)  e.  CC )  ->  ( ( 1  /  P )  +  ( 1  /  Q
) )  e.  CC )
323, 12, 31syl2an 464 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC )
33 mulne0 9624 . . 3  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( P  x.  Q
)  =/=  0 )
34 ax-1cn 9008 . . . 4  |-  1  e.  CC
35 mulcan 9619 . . . 4  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  1  e.  CC  /\  (
( P  x.  Q
)  e.  CC  /\  ( P  x.  Q
)  =/=  0 ) )  ->  ( (
( P  x.  Q
)  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( (
1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
3634, 35mp3an2 1267 . . 3  |-  ( ( ( ( 1  /  P )  +  ( 1  /  Q ) )  e.  CC  /\  ( ( P  x.  Q )  e.  CC  /\  ( P  x.  Q
)  =/=  0 ) )  ->  ( (
( P  x.  Q
)  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q )  x.  1 )  <->  ( (
1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
3732, 23, 33, 36syl12anc 1182 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( P  x.  Q )  x.  ( ( 1  /  P )  +  ( 1  /  Q ) ) )  =  ( ( P  x.  Q
)  x.  1 )  <-> 
( ( 1  /  P )  +  ( 1  /  Q ) )  =  1 ) )
38 eqcom 2410 . . . 4  |-  ( ( P  +  Q )  =  ( P  x.  Q )  <->  ( P  x.  Q )  =  ( P  +  Q ) )
39 muleqadd 9626 . . . 4  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  x.  Q )  =  ( P  +  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4038, 39syl5bb 249 . . 3  |-  ( ( P  e.  CC  /\  Q  e.  CC )  ->  ( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4140ad2ant2r 728 . 2  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( P  +  Q )  =  ( P  x.  Q )  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
4230, 37, 413bitr3d 275 1  |-  ( ( ( P  e.  CC  /\  P  =/=  0 )  /\  ( Q  e.  CC  /\  Q  =/=  0 ) )  -> 
( ( ( 1  /  P )  +  ( 1  /  Q
) )  =  1  <-> 
( ( P  - 
1 )  x.  ( Q  -  1 ) )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2571  (class class class)co 6044   CCcc 8948   0cc0 8950   1c1 8951    + caddc 8953    x. cmul 8955    - cmin 9251    / cdiv 9637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-po 4467  df-so 4468  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638
  Copyright terms: Public domain W3C validator