Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constmap Unicode version

Theorem constmap 26120
Description: A constant (represented without dummy variables) is an element of a function set.

_Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets._ (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.)

Hypotheses
Ref Expression
constmap.1  |-  A  e. 
_V
constmap.3  |-  C  e. 
_V
Assertion
Ref Expression
constmap  |-  ( B  e.  C  ->  ( A  X.  { B }
)  e.  ( C  ^m  A ) )

Proof of Theorem constmap
StepHypRef Expression
1 fconst6g 5333 . 2  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> C )
2 constmap.3 . . 3  |-  C  e. 
_V
3 constmap.1 . . 3  |-  A  e. 
_V
42, 3elmap 6729 . 2  |-  ( ( A  X.  { B } )  e.  ( C  ^m  A )  <-> 
( A  X.  { B } ) : A --> C )
51, 4sylibr 205 1  |-  ( B  e.  C  ->  ( A  X.  { B }
)  e.  ( C  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    e. wcel 1621   _Vcvv 2740   {csn 3581    X. cxp 4624   -->wf 4634  (class class class)co 5757    ^m cmap 6705
This theorem is referenced by:  mzpclall  26137  mzpindd  26156
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-map 6707
  Copyright terms: Public domain W3C validator