Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constmap Structured version   Unicode version

Theorem constmap 26767
Description: A constant (represented without dummy variables) is an element of a function set.

_Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets._ (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.)

Hypotheses
Ref Expression
constmap.1  |-  A  e. 
_V
constmap.3  |-  C  e. 
_V
Assertion
Ref Expression
constmap  |-  ( B  e.  C  ->  ( A  X.  { B }
)  e.  ( C  ^m  A ) )

Proof of Theorem constmap
StepHypRef Expression
1 fconst6g 5632 . 2  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> C )
2 constmap.3 . . 3  |-  C  e. 
_V
3 constmap.1 . . 3  |-  A  e. 
_V
42, 3elmap 7042 . 2  |-  ( ( A  X.  { B } )  e.  ( C  ^m  A )  <-> 
( A  X.  { B } ) : A --> C )
51, 4sylibr 204 1  |-  ( B  e.  C  ->  ( A  X.  { B }
)  e.  ( C  ^m  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   _Vcvv 2956   {csn 3814    X. cxp 4876   -->wf 5450  (class class class)co 6081    ^m cmap 7018
This theorem is referenced by:  mzpclall  26784  mzpindd  26803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-map 7020
  Copyright terms: Public domain W3C validator