MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosadd Unicode version

Theorem cosadd 12407
Description: Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
cosadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )

Proof of Theorem cosadd
StepHypRef Expression
1 addcl 8787 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 cosval 12365 . . 3  |-  ( ( A  +  B )  e.  CC  ->  ( cos `  ( A  +  B ) )  =  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  2 ) )
31, 2syl 17 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( exp `  (
_i  x.  ( A  +  B ) ) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  2
) )
4 coscl 12369 . . . . . . . 8  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
54adantr 453 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  A
)  e.  CC )
6 coscl 12369 . . . . . . . 8  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
76adantl 454 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  B
)  e.  CC )
85, 7mulcld 8823 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
9 ax-icn 8764 . . . . . . . 8  |-  _i  e.  CC
10 sincl 12368 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
1110adantl 454 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  B
)  e.  CC )
12 mulcl 8789 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( sin `  B )  e.  CC )  -> 
( _i  x.  ( sin `  B ) )  e.  CC )
139, 11, 12sylancr 647 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  B ) )  e.  CC )
14 sincl 12368 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
1514adantr 453 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( sin `  A
)  e.  CC )
16 mulcl 8789 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
179, 15, 16sylancr 647 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( sin `  A ) )  e.  CC )
1813, 17mulcld 8823 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
198, 18addcld 8822 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
205, 13mulcld 8823 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  e.  CC )
217, 17mulcld 8823 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) )  e.  CC )
2220, 21addcld 8822 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC )
2319, 22, 19ppncand 9165 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) )  +  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
24 adddi 8794 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
_i  x.  ( A  +  B ) )  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
259, 24mp3an1 1269 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  ( A  +  B )
)  =  ( ( _i  x.  A )  +  ( _i  x.  B ) ) )
2625fveq2d 5462 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) ) )
27 simpl 445 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
28 mulcl 8789 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
299, 27, 28sylancr 647 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
30 simpr 449 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
31 mulcl 8789 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
329, 30, 31sylancr 647 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
33 efadd 12337 . . . . . . 7  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
3429, 32, 33syl2anc 645 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  B ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  B )
) ) )
35 efival 12394 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
36 efival 12394 . . . . . . . 8  |-  ( B  e.  CC  ->  ( exp `  ( _i  x.  B ) )  =  ( ( cos `  B
)  +  ( _i  x.  ( sin `  B
) ) ) )
3735, 36oveqan12d 5811 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) ) )
385, 17, 7, 13muladdd 9205 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  +  ( _i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
3937, 38eqtrd 2290 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  B
) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) ) )
4026, 34, 393eqtrd 2294 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
_i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
419negcli 9082 . . . . . . . 8  |-  -u _i  e.  CC
42 adddi 8794 . . . . . . . 8  |-  ( (
-u _i  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
4341, 42mp3an1 1269 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  ( A  +  B
) )  =  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) )
4443fveq2d 5462 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( exp `  ( ( -u _i  x.  A )  +  (
-u _i  x.  B
) ) ) )
45 mulcl 8789 . . . . . . . 8  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
4641, 27, 45sylancr 647 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
47 mulcl 8789 . . . . . . . 8  |-  ( (
-u _i  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
4841, 30, 47sylancr 647 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  e.  CC )
49 efadd 12337 . . . . . . 7  |-  ( ( ( -u _i  x.  A )  e.  CC  /\  ( -u _i  x.  B )  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
5046, 48, 49syl2anc 645 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  (
( -u _i  x.  A
)  +  ( -u _i  x.  B ) ) )  =  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) ) )
51 efmival 12395 . . . . . . . 8  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  =  ( ( cos `  A
)  -  ( _i  x.  ( sin `  A
) ) ) )
52 efmival 12395 . . . . . . . 8  |-  ( B  e.  CC  ->  ( exp `  ( -u _i  x.  B ) )  =  ( ( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) )
5351, 52oveqan12d 5811 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( cos `  A )  -  ( _i  x.  ( sin `  A ) ) )  x.  (
( cos `  B
)  -  ( _i  x.  ( sin `  B
) ) ) ) )
545, 17, 7, 13mulsubd 9206 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  -  (
_i  x.  ( sin `  A ) ) )  x.  ( ( cos `  B )  -  (
_i  x.  ( sin `  B ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
5553, 54eqtrd 2290 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  ( -u _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
5644, 50, 553eqtrd 2294 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( -u _i  x.  ( A  +  B ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  -  ( ( ( cos `  A )  x.  ( _i  x.  ( sin `  B ) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
5740, 56oveq12d 5810 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) )  +  ( ( ( cos `  A )  x.  (
_i  x.  ( sin `  B ) ) )  +  ( ( cos `  B )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  +  ( ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  -  ( ( ( cos `  A
)  x.  ( _i  x.  ( sin `  B
) ) )  +  ( ( cos `  B
)  x.  ( _i  x.  ( sin `  A
) ) ) ) ) ) )
58192timesd 9921 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) )  =  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  +  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) ) ) )
5923, 57, 583eqtr4d 2300 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( exp `  (
_i  x.  ( A  +  B ) ) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  =  ( 2  x.  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) ) )
6059oveq1d 5807 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( exp `  ( _i  x.  ( A  +  B )
) )  +  ( exp `  ( -u _i  x.  ( A  +  B ) ) ) )  /  2 )  =  ( ( 2  x.  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) ) )  /  2 ) )
61 2cn 9784 . . . . 5  |-  2  e.  CC
62 2ne0 9797 . . . . 5  |-  2  =/=  0
63 divcan3 9416 . . . . 5  |-  ( ( ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  (
( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) )  /  2 )  =  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) ) )
6461, 62, 63mp3an23 1274 . . . 4  |-  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) )  e.  CC  ->  (
( 2  x.  (
( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) )  /  2 )  =  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A ) ) ) ) )
6519, 64syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  2
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) ) ) )
669a1i 12 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
6766, 11, 66, 15mul4d 8992 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  =  ( ( _i  x.  _i )  x.  (
( sin `  B
)  x.  ( sin `  A ) ) ) )
68 ixi 9365 . . . . . . 7  |-  ( _i  x.  _i )  = 
-u 1
6968oveq1i 5802 . . . . . 6  |-  ( ( _i  x.  _i )  x.  ( ( sin `  B )  x.  ( sin `  A ) ) )  =  ( -u
1  x.  ( ( sin `  B )  x.  ( sin `  A
) ) )
7011, 15mulcomd 8824 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  B
)  x.  ( sin `  A ) )  =  ( ( sin `  A
)  x.  ( sin `  B ) ) )
7170oveq2d 5808 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( sin `  B
)  x.  ( sin `  A ) ) )  =  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
7269, 71syl5eq 2302 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  (
( sin `  B
)  x.  ( sin `  A ) ) )  =  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
7315, 11mulcld 8823 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  B ) )  e.  CC )
7473mulm1d 9199 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  B ) ) )  =  -u ( ( sin `  A )  x.  ( sin `  B ) ) )
7567, 72, 743eqtrd 2294 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( sin `  B ) )  x.  ( _i  x.  ( sin `  A
) ) )  = 
-u ( ( sin `  A )  x.  ( sin `  B ) ) )
7675oveq2d 5808 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  + 
-u ( ( sin `  A )  x.  ( sin `  B ) ) ) )
778, 73negsubd 9131 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  -u ( ( sin `  A )  x.  ( sin `  B ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
7865, 76, 773eqtrd 2294 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( ( cos `  A )  x.  ( cos `  B ) )  +  ( ( _i  x.  ( sin `  B
) )  x.  (
_i  x.  ( sin `  A ) ) ) ) )  /  2
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
793, 60, 783eqtrd 2294 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   ` cfv 4673  (class class class)co 5792   CCcc 8703   0cc0 8705   1c1 8706   _ici 8707    + caddc 8708    x. cmul 8710    - cmin 9005   -ucneg 9006    / cdiv 9391   2c2 9763   expce 12305   sincsin 12307   cosccos 12308
This theorem is referenced by:  tanaddlem  12408  tanadd  12409  cossub  12411  sinmul  12414  cosmul  12415  addcos  12416  subcos  12417  sincossq  12418  cos2t  12420  demoivreALT  12443  cosppi  19820  coshalfpip  19824
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-rp 10322  df-ico 10628  df-fz 10749  df-fzo 10837  df-fl 10891  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-sum 12124  df-ef 12311  df-sin 12313  df-cos 12314
  Copyright terms: Public domain W3C validator