MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphdir Unicode version

Theorem cphdir 19155
Description: Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. Complex version of ipdir 16858. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h  |-  .,  =  ( .i `  W )
cphipcj.v  |-  V  =  ( Base `  W
)
cphdir.P  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
cphdir  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .+  B )  .,  C )  =  ( ( A  .,  C
)  +  ( B 
.,  C ) ) )

Proof of Theorem cphdir
StepHypRef Expression
1 cphphl 19122 . . 3  |-  ( W  e.  CPreHil  ->  W  e.  PreHil )
2 eqid 2435 . . . 4  |-  (Scalar `  W )  =  (Scalar `  W )
3 cphipcj.h . . . 4  |-  .,  =  ( .i `  W )
4 cphipcj.v . . . 4  |-  V  =  ( Base `  W
)
5 cphdir.P . . . 4  |-  .+  =  ( +g  `  W )
6 eqid 2435 . . . 4  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (Scalar `  W )
)
72, 3, 4, 5, 6ipdir 16858 . . 3  |-  ( ( W  e.  PreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .+  B )  .,  C )  =  ( ( A  .,  C
) ( +g  `  (Scalar `  W ) ) ( B  .,  C ) ) )
81, 7sylan 458 . 2  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .+  B )  .,  C )  =  ( ( A  .,  C
) ( +g  `  (Scalar `  W ) ) ( B  .,  C ) ) )
9 cphclm 19140 . . . . 5  |-  ( W  e.  CPreHil  ->  W  e. CMod )
102clmadd 19087 . . . . 5  |-  ( W  e. CMod  ->  +  =  ( +g  `  (Scalar `  W ) ) )
119, 10syl 16 . . . 4  |-  ( W  e.  CPreHil  ->  +  =  ( +g  `  (Scalar `  W ) ) )
1211adantr 452 . . 3  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  +  =  ( +g  `  (Scalar `  W ) ) )
1312oveqd 6089 . 2  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .,  C )  +  ( B  .,  C
) )  =  ( ( A  .,  C
) ( +g  `  (Scalar `  W ) ) ( B  .,  C ) ) )
148, 13eqtr4d 2470 1  |-  ( ( W  e.  CPreHil  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( A  .+  B )  .,  C )  =  ( ( A  .,  C
)  +  ( B 
.,  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5445  (class class class)co 6072    + caddc 8982   Basecbs 13457   +g cplusg 13517  Scalarcsca 13520   .icip 13522   PreHilcphl 16843  CModcclm 19075   CPreHilccph 19117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-tpos 6470  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-fz 11033  df-seq 11312  df-exp 11371  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-0g 13715  df-mnd 14678  df-grp 14800  df-subg 14929  df-ghm 14992  df-cmn 15402  df-mgp 15637  df-rng 15651  df-cring 15652  df-ur 15653  df-oppr 15716  df-dvdsr 15734  df-unit 15735  df-drng 15825  df-subrg 15854  df-lmod 15940  df-lmhm 16086  df-lvec 16163  df-sra 16232  df-rgmod 16233  df-cnfld 16692  df-phl 16845  df-nlm 18622  df-clm 19076  df-cph 19119
  Copyright terms: Public domain W3C validator