MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crre Unicode version

Theorem crre 11565
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )

Proof of Theorem crre
StepHypRef Expression
1 recn 8795 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 8764 . . . . 5  |-  _i  e.  CC
3 recn 8795 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 8789 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 647 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 8787 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 465 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 reval 11557 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Re `  ( A  +  ( _i  x.  B ) ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) )
97, 8syl 17 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) )
10 cjcl 11556 . . . . . 6  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
* `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
117, 10syl 17 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
127, 11addcld 8822 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  e.  CC )
1312halfcld 9924 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  CC )
141adantr 453 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
15 recl 11561 . . . . . . 7  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Re `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
167, 15syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
179, 16eqeltrrd 2333 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  RR )
18 simpl 445 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
1917, 18resubcld 9179 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  e.  RR )
202a1i 12 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  _i  e.  CC )
213adantl 454 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
222, 21, 4sylancr 647 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  B
)  e.  CC )
237, 11subcld 9125 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  e.  CC )
2423halfcld 9924 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  CC )
2520, 22, 24subdid 9203 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( _i  x.  B
)  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) )  /  2 ) ) )  =  ( ( _i  x.  ( _i  x.  B ) )  -  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
26 mulcl 8789 . . . . . . . . . . . . . . . 16  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
272, 21, 26sylancr 647 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  B
)  e.  CC )
2814, 27, 14pnpcand 9162 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  ( A  +  A )
)  =  ( ( _i  x.  B )  -  A ) )
2927, 14, 27pnpcan2d 9163 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  B )  +  ( _i  x.  B
) )  -  ( A  +  ( _i  x.  B ) ) )  =  ( ( _i  x.  B )  -  A ) )
3028, 29eqtr4d 2293 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  ( A  +  A )
)  =  ( ( ( _i  x.  B
)  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B
) ) ) )
3130oveq1d 5807 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( A  +  A
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  =  ( ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B ) ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) ) )
3214, 14addcld 8822 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  A
)  e.  CC )
337, 11, 32addsubd 9146 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( A  +  A ) )  =  ( ( ( A  +  ( _i  x.  B ) )  -  ( A  +  A ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) ) )
3427, 27addcld 8822 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  B )  +  ( _i  x.  B ) )  e.  CC )
3534, 7, 11subsubd 9153 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  B )  +  ( _i  x.  B
) )  -  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  =  ( ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B ) ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) ) )
3631, 33, 353eqtr4d 2300 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( A  +  A ) )  =  ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) ) )
37142timesd 9922 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  A
)  =  ( A  +  A ) )
3837oveq2d 5808 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( 2  x.  A ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( A  +  A
) ) )
39272timesd 9922 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  (
_i  x.  B )
)  =  ( ( _i  x.  B )  +  ( _i  x.  B ) ) )
4039oveq1d 5807 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  ( _i  x.  B
) )  -  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  =  ( ( ( _i  x.  B
)  +  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) ) ) )
4136, 38, 403eqtr4d 2300 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( 2  x.  A ) )  =  ( ( 2  x.  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) ) )
4241oveq1d 5807 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( 2  x.  A
) )  /  2
)  =  ( ( ( 2  x.  (
_i  x.  B )
)  -  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) ) )  /  2 ) )
43 2cn 9784 . . . . . . . . . . 11  |-  2  e.  CC
44 mulcl 8789 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
4543, 14, 44sylancr 647 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  A
)  e.  CC )
4643a1i 12 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  e.  CC )
47 2ne0 9797 . . . . . . . . . . 11  |-  2  =/=  0
4847a1i 12 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  =/=  0 )
4912, 45, 46, 48divsubdird 9543 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( 2  x.  A
) )  /  2
)  =  ( ( ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  ( ( 2  x.  A )  / 
2 ) ) )
50 mulcl 8789 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( 2  x.  ( _i  x.  B
) )  e.  CC )
5143, 27, 50sylancr 647 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  (
_i  x.  B )
)  e.  CC )
5251, 23, 46, 48divsubdird 9543 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( 2  x.  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  =  ( ( ( 2  x.  (
_i  x.  B )
)  /  2 )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5342, 49, 523eqtr3d 2298 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  (
( 2  x.  A
)  /  2 ) )  =  ( ( ( 2  x.  (
_i  x.  B )
)  /  2 )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5414, 46, 48divcan3d 9509 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  A )  /  2
)  =  A )
5554oveq2d 5808 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  (
( 2  x.  A
)  /  2 ) )  =  ( ( ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )
5627, 46, 48divcan3d 9509 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  ( _i  x.  B
) )  /  2
)  =  ( _i  x.  B ) )
5756oveq1d 5807 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( 2  x.  ( _i  x.  B ) )  / 
2 )  -  (
( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) )  =  ( ( _i  x.  B )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5853, 55, 573eqtr3d 2298 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  ( ( _i  x.  B )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5958oveq2d 5808 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  =  ( _i  x.  ( ( _i  x.  B )  -  (
( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
6020, 20, 21mulassd 8826 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  _i )  x.  B
)  =  ( _i  x.  ( _i  x.  B ) ) )
6120, 23, 46, 48divassd 9539 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  =  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
6260, 61oveq12d 5810 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  _i )  x.  B )  -  (
( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  /  2 ) )  =  ( ( _i  x.  ( _i  x.  B ) )  -  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
6325, 59, 623eqtr4d 2300 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  =  ( ( ( _i  x.  _i )  x.  B )  -  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
) ) )
64 ixi 9365 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
65 1re 8805 . . . . . . . . 9  |-  1  e.  RR
6665renegcli 9076 . . . . . . . 8  |-  -u 1  e.  RR
6764, 66eqeltri 2328 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
68 simpr 449 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
69 remulcl 8790 . . . . . . 7  |-  ( ( ( _i  x.  _i )  e.  RR  /\  B  e.  RR )  ->  (
( _i  x.  _i )  x.  B )  e.  RR )
7067, 68, 69sylancr 647 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  _i )  x.  B
)  e.  RR )
71 cjth 11554 . . . . . . . . 9  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  e.  RR  /\  ( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  e.  RR ) )
7271simprd 451 . . . . . . . 8  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
_i  x.  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) ) )  e.  RR )
737, 72syl 17 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  e.  RR )
7473rehalfcld 9926 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  e.  RR )
7570, 74resubcld 9179 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  _i )  x.  B )  -  (
( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  /  2 ) )  e.  RR )
7663, 75eqeltrd 2332 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  e.  RR )
77 rimul 9705 . . . 4  |-  ( ( ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  e.  RR  /\  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  e.  RR )  -> 
( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  0 )
7819, 76, 77syl2anc 645 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  0 )
7913, 14, 78subeq0d 9133 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  =  A )
809, 79eqtrd 2290 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   ` cfv 4673  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706   _ici 8707    + caddc 8708    x. cmul 8710    - cmin 9005   -ucneg 9006    / cdiv 9391   2c2 9763   *ccj 11547   Recre 11548
This theorem is referenced by:  crim  11566  replim  11567  mulre  11572  recj  11575  reneg  11576  readd  11577  remullem  11579  rei  11607  crrei  11643  crred  11682  rennim  11690  absreimsq  11743  4sqlem4  12962  2sqlem2  20566
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-iota 6225  df-riota 6272  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-2 9772  df-cj 11550  df-re 11551
  Copyright terms: Public domain W3C validator