MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crre Unicode version

Theorem crre 11595
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )

Proof of Theorem crre
StepHypRef Expression
1 recn 8823 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 8792 . . . . 5  |-  _i  e.  CC
3 recn 8823 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 8817 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 644 . . . 4  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 addcl 8815 . . . 4  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
71, 5, 6syl2an 463 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  ( _i  x.  B ) )  e.  CC )
8 reval 11587 . . 3  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Re `  ( A  +  ( _i  x.  B ) ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) )
97, 8syl 15 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) )
10 cjcl 11586 . . . . . 6  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
* `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
117, 10syl 15 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  e.  CC )
127, 11addcld 8850 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  e.  CC )
1312halfcld 9952 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  CC )
141adantr 451 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  CC )
15 recl 11591 . . . . . . 7  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
Re `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
167, 15syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  e.  RR )
179, 16eqeltrrd 2359 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  RR )
18 simpl 443 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
1917, 18resubcld 9207 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  e.  RR )
202a1i 10 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  _i  e.  CC )
213adantl 452 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  CC )
222, 21, 4sylancr 644 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  B
)  e.  CC )
237, 11subcld 9153 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  e.  CC )
2423halfcld 9952 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  e.  CC )
2520, 22, 24subdid 9231 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( _i  x.  B
)  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) )  /  2 ) ) )  =  ( ( _i  x.  ( _i  x.  B ) )  -  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
2614, 22, 14pnpcand 9190 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  ( A  +  A )
)  =  ( ( _i  x.  B )  -  A ) )
2722, 14, 22pnpcan2d 9191 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  B )  +  ( _i  x.  B
) )  -  ( A  +  ( _i  x.  B ) ) )  =  ( ( _i  x.  B )  -  A ) )
2826, 27eqtr4d 2319 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  ( _i  x.  B
) )  -  ( A  +  A )
)  =  ( ( ( _i  x.  B
)  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B
) ) ) )
2928oveq1d 5835 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  -  ( A  +  A
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  =  ( ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B ) ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) ) )
3014, 14addcld 8850 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  A
)  e.  CC )
317, 11, 30addsubd 9174 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( A  +  A ) )  =  ( ( ( A  +  ( _i  x.  B ) )  -  ( A  +  A ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) ) )
3222, 22addcld 8850 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  B )  +  ( _i  x.  B ) )  e.  CC )
3332, 7, 11subsubd 9181 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  B )  +  ( _i  x.  B
) )  -  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  =  ( ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( A  +  ( _i  x.  B ) ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) ) )
3429, 31, 333eqtr4d 2326 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( A  +  A ) )  =  ( ( ( _i  x.  B )  +  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) ) )
35142timesd 9950 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  A
)  =  ( A  +  A ) )
3635oveq2d 5836 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( 2  x.  A ) )  =  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( A  +  A
) ) )
37222timesd 9950 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  (
_i  x.  B )
)  =  ( ( _i  x.  B )  +  ( _i  x.  B ) ) )
3837oveq1d 5835 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  ( _i  x.  B
) )  -  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  =  ( ( ( _i  x.  B
)  +  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) ) ) )
3934, 36, 383eqtr4d 2326 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  -  ( 2  x.  A ) )  =  ( ( 2  x.  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) ) )
4039oveq1d 5835 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( 2  x.  A
) )  /  2
)  =  ( ( ( 2  x.  (
_i  x.  B )
)  -  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) ) )  /  2 ) )
41 2cn 9812 . . . . . . . . . . 11  |-  2  e.  CC
42 mulcl 8817 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
4341, 14, 42sylancr 644 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  A
)  e.  CC )
4441a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  e.  CC )
45 2ne0 9825 . . . . . . . . . . 11  |-  2  =/=  0
4645a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  2  =/=  0 )
4712, 43, 44, 46divsubdird 9571 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  -  ( 2  x.  A
) )  /  2
)  =  ( ( ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  ( ( 2  x.  A )  / 
2 ) ) )
48 mulcl 8817 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( 2  x.  ( _i  x.  B
) )  e.  CC )
4941, 22, 48sylancr 644 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  (
_i  x.  B )
)  e.  CC )
5049, 23, 44, 46divsubdird 9571 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( 2  x.  ( _i  x.  B ) )  -  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  =  ( ( ( 2  x.  (
_i  x.  B )
)  /  2 )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5140, 47, 503eqtr3d 2324 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  (
( 2  x.  A
)  /  2 ) )  =  ( ( ( 2  x.  (
_i  x.  B )
)  /  2 )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5214, 44, 46divcan3d 9537 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  A )  /  2
)  =  A )
5352oveq2d 5836 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  (
( 2  x.  A
)  /  2 ) )  =  ( ( ( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )
5422, 44, 46divcan3d 9537 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  x.  ( _i  x.  B
) )  /  2
)  =  ( _i  x.  B ) )
5554oveq1d 5835 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( 2  x.  ( _i  x.  B ) )  / 
2 )  -  (
( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) )  =  ( ( _i  x.  B )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5651, 53, 553eqtr3d 2324 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  ( ( _i  x.  B )  -  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
5756oveq2d 5836 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  =  ( _i  x.  ( ( _i  x.  B )  -  (
( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
5820, 20, 21mulassd 8854 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  _i )  x.  B
)  =  ( _i  x.  ( _i  x.  B ) ) )
5920, 23, 44, 46divassd 9567 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  =  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 ) ) )
6058, 59oveq12d 5838 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  _i )  x.  B )  -  (
( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  /  2 ) )  =  ( ( _i  x.  ( _i  x.  B ) )  -  ( _i  x.  ( ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 ) ) ) )
6125, 57, 603eqtr4d 2326 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  =  ( ( ( _i  x.  _i )  x.  B )  -  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
) ) )
62 ixi 9393 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
63 1re 8833 . . . . . . . . 9  |-  1  e.  RR
6463renegcli 9104 . . . . . . . 8  |-  -u 1  e.  RR
6562, 64eqeltri 2354 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
66 simpr 447 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
67 remulcl 8818 . . . . . . 7  |-  ( ( ( _i  x.  _i )  e.  RR  /\  B  e.  RR )  ->  (
( _i  x.  _i )  x.  B )  e.  RR )
6865, 66, 67sylancr 644 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  _i )  x.  B
)  e.  RR )
69 cjth 11584 . . . . . . . . 9  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
( ( A  +  ( _i  x.  B
) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  e.  RR  /\  ( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  e.  RR ) )
7069simprd 449 . . . . . . . 8  |-  ( ( A  +  ( _i  x.  B ) )  e.  CC  ->  (
_i  x.  ( ( A  +  ( _i  x.  B ) )  -  ( * `  ( A  +  ( _i  x.  B ) ) ) ) )  e.  RR )
717, 70syl 15 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  e.  RR )
7271rehalfcld 9954 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( _i  x.  ( ( A  +  ( _i  x.  B
) )  -  (
* `  ( A  +  ( _i  x.  B ) ) ) ) )  /  2
)  e.  RR )
7368, 72resubcld 9207 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( _i  x.  _i )  x.  B )  -  (
( _i  x.  (
( A  +  ( _i  x.  B ) )  -  ( * `
 ( A  +  ( _i  x.  B
) ) ) ) )  /  2 ) )  e.  RR )
7461, 73eqeltrd 2358 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  e.  RR )
75 rimul 9733 . . . 4  |-  ( ( ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  e.  RR  /\  ( _i  x.  (
( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  -  A ) )  e.  RR )  -> 
( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  0 )
7619, 74, 75syl2anc 642 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  (
_i  x.  B )
) ) )  / 
2 )  -  A
)  =  0 )
7713, 14, 76subeq0d 9161 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  ( _i  x.  B ) )  +  ( * `  ( A  +  ( _i  x.  B ) ) ) )  /  2 )  =  A )
789, 77eqtrd 2316 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1685    =/= wne 2447   ` cfv 5221  (class class class)co 5820   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734   _ici 8735    + caddc 8736    x. cmul 8738    - cmin 9033   -ucneg 9034    / cdiv 9419   2c2 9791   *ccj 11577   Recre 11578
This theorem is referenced by:  crim  11596  replim  11597  mulre  11602  recj  11605  reneg  11606  readd  11607  remullem  11609  rei  11637  crrei  11673  crred  11712  rennim  11720  absreimsq  11773  4sqlem4  12995  2sqlem2  20599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-po 4313  df-so 4314  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-iota 6253  df-riota 6300  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-2 9800  df-cj 11580  df-re 11581
  Copyright terms: Public domain W3C validator