MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Unicode version

Theorem crreczi 11157
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1  |-  A  e.  RR
crrecz.2  |-  B  e.  RR
Assertion
Ref Expression
crreczi  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( 1  / 
( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8  |-  A  e.  RR
21recni 8782 . . . . . . 7  |-  A  e.  CC
32sqcli 11115 . . . . . 6  |-  ( A ^ 2 )  e.  CC
4 ax-icn 8729 . . . . . . . 8  |-  _i  e.  CC
5 crrecz.2 . . . . . . . . 9  |-  B  e.  RR
65recni 8782 . . . . . . . 8  |-  B  e.  CC
74, 6mulcli 8775 . . . . . . 7  |-  ( _i  x.  B )  e.  CC
87sqcli 11115 . . . . . 6  |-  ( ( _i  x.  B ) ^ 2 )  e.  CC
93, 8negsubi 9057 . . . . 5  |-  ( ( A ^ 2 )  +  -u ( ( _i  x.  B ) ^
2 ) )  =  ( ( A ^
2 )  -  (
( _i  x.  B
) ^ 2 ) )
104, 6sqmuli 11118 . . . . . . . . 9  |-  ( ( _i  x.  B ) ^ 2 )  =  ( ( _i ^
2 )  x.  ( B ^ 2 ) )
11 i2 11134 . . . . . . . . . 10  |-  ( _i
^ 2 )  = 
-u 1
1211oveq1i 5767 . . . . . . . . 9  |-  ( ( _i ^ 2 )  x.  ( B ^
2 ) )  =  ( -u 1  x.  ( B ^ 2 ) )
13 ax-1cn 8728 . . . . . . . . . 10  |-  1  e.  CC
146sqcli 11115 . . . . . . . . . 10  |-  ( B ^ 2 )  e.  CC
1513, 14mulneg1i 9158 . . . . . . . . 9  |-  ( -u
1  x.  ( B ^ 2 ) )  =  -u ( 1  x.  ( B ^ 2 ) )
1610, 12, 153eqtri 2280 . . . . . . . 8  |-  ( ( _i  x.  B ) ^ 2 )  = 
-u ( 1  x.  ( B ^ 2 ) )
1716negeqi 8978 . . . . . . 7  |-  -u (
( _i  x.  B
) ^ 2 )  =  -u -u ( 1  x.  ( B ^ 2 ) )
1813, 14mulcli 8775 . . . . . . . 8  |-  ( 1  x.  ( B ^
2 ) )  e.  CC
1918negnegi 9049 . . . . . . 7  |-  -u -u (
1  x.  ( B ^ 2 ) )  =  ( 1  x.  ( B ^ 2 ) )
2014mulid2i 8773 . . . . . . 7  |-  ( 1  x.  ( B ^
2 ) )  =  ( B ^ 2 )
2117, 19, 203eqtri 2280 . . . . . 6  |-  -u (
( _i  x.  B
) ^ 2 )  =  ( B ^
2 )
2221oveq2i 5768 . . . . 5  |-  ( ( A ^ 2 )  +  -u ( ( _i  x.  B ) ^
2 ) )  =  ( ( A ^
2 )  +  ( B ^ 2 ) )
232, 7subsqi 11145 . . . . 5  |-  ( ( A ^ 2 )  -  ( ( _i  x.  B ) ^
2 ) )  =  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )
249, 22, 233eqtr3ri 2285 . . . 4  |-  ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B
) ) )  =  ( ( A ^
2 )  +  ( B ^ 2 ) )
2524oveq1i 5767 . . 3  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B ) ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
26 neorian 2506 . . . . 5  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <->  -.  ( A  =  0  /\  B  =  0 ) )
27 sumsqeq0 11113 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0 ) )
281, 5, 27mp2an 656 . . . . . 6  |-  ( ( A  =  0  /\  B  =  0 )  <-> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  0 )
2928necon3bbii 2450 . . . . 5  |-  ( -.  ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0
)
3026, 29bitri 242 . . . 4  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <-> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =/=  0 )
312, 7addcli 8774 . . . . 5  |-  ( A  +  ( _i  x.  B ) )  e.  CC
322, 7subcli 9055 . . . . 5  |-  ( A  -  ( _i  x.  B ) )  e.  CC
333, 14addcli 8774 . . . . 5  |-  ( ( A ^ 2 )  +  ( B ^
2 ) )  e.  CC
3431, 32, 33divasszi 9443 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( A  +  ( _i  x.  B
) )  x.  (
( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) ) )
3530, 34sylbi 189 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B
) ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) ) )
36 divid 9384 . . . . 5  |-  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  CC  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =/=  0 )  ->  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  1 )
3733, 36mpan 654 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  =  1 )
3830, 37sylbi 189 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  1 )
3925, 35, 383eqtr3a 2312 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 )
4032, 33divclzi 9428 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  e.  CC )
4130, 40sylbi 189 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  e.  CC )
4231a1i 12 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
43 crne0 9672 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =/=  0  \/  B  =/=  0 )  <->  ( A  +  ( _i  x.  B ) )  =/=  0 ) )
441, 5, 43mp2an 656 . . . 4  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <-> 
( A  +  ( _i  x.  B ) )  =/=  0 )
4544biimpi 188 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( A  +  ( _i  x.  B
) )  =/=  0
)
46 divmul 9360 . . . 4  |-  ( ( 1  e.  CC  /\  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  e.  CC  /\  ( ( A  +  ( _i  x.  B
) )  e.  CC  /\  ( A  +  ( _i  x.  B ) )  =/=  0 ) )  ->  ( (
1  /  ( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4713, 46mp3an1 1269 . . 3  |-  ( ( ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  e.  CC  /\  ( ( A  +  ( _i  x.  B
) )  e.  CC  /\  ( A  +  ( _i  x.  B ) )  =/=  0 ) )  ->  ( (
1  /  ( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4841, 42, 45, 47syl12anc 1185 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( 1  /  ( A  +  ( _i  x.  B
) ) )  =  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4939, 48mpbird 225 1  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( 1  / 
( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419  (class class class)co 5757   CCcc 8668   RRcr 8669   0cc0 8670   1c1 8671   _ici 8672    + caddc 8673    x. cmul 8675    - cmin 8970   -ucneg 8971    / cdiv 9356   2c2 9728   ^cexp 11035
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-2nd 6022  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-n0 9898  df-z 9957  df-uz 10163  df-seq 10978  df-exp 11036
  Copyright terms: Public domain W3C validator