MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Unicode version

Theorem crreczi 11193
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1  |-  A  e.  RR
crrecz.2  |-  B  e.  RR
Assertion
Ref Expression
crreczi  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( 1  / 
( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8  |-  A  e.  RR
21recni 8817 . . . . . . 7  |-  A  e.  CC
32sqcli 11151 . . . . . 6  |-  ( A ^ 2 )  e.  CC
4 ax-icn 8764 . . . . . . . 8  |-  _i  e.  CC
5 crrecz.2 . . . . . . . . 9  |-  B  e.  RR
65recni 8817 . . . . . . . 8  |-  B  e.  CC
74, 6mulcli 8810 . . . . . . 7  |-  ( _i  x.  B )  e.  CC
87sqcli 11151 . . . . . 6  |-  ( ( _i  x.  B ) ^ 2 )  e.  CC
93, 8negsubi 9092 . . . . 5  |-  ( ( A ^ 2 )  +  -u ( ( _i  x.  B ) ^
2 ) )  =  ( ( A ^
2 )  -  (
( _i  x.  B
) ^ 2 ) )
104, 6sqmuli 11154 . . . . . . . . 9  |-  ( ( _i  x.  B ) ^ 2 )  =  ( ( _i ^
2 )  x.  ( B ^ 2 ) )
11 i2 11170 . . . . . . . . . 10  |-  ( _i
^ 2 )  = 
-u 1
1211oveq1i 5802 . . . . . . . . 9  |-  ( ( _i ^ 2 )  x.  ( B ^
2 ) )  =  ( -u 1  x.  ( B ^ 2 ) )
13 ax-1cn 8763 . . . . . . . . . 10  |-  1  e.  CC
146sqcli 11151 . . . . . . . . . 10  |-  ( B ^ 2 )  e.  CC
1513, 14mulneg1i 9193 . . . . . . . . 9  |-  ( -u
1  x.  ( B ^ 2 ) )  =  -u ( 1  x.  ( B ^ 2 ) )
1610, 12, 153eqtri 2282 . . . . . . . 8  |-  ( ( _i  x.  B ) ^ 2 )  = 
-u ( 1  x.  ( B ^ 2 ) )
1716negeqi 9013 . . . . . . 7  |-  -u (
( _i  x.  B
) ^ 2 )  =  -u -u ( 1  x.  ( B ^ 2 ) )
1813, 14mulcli 8810 . . . . . . . 8  |-  ( 1  x.  ( B ^
2 ) )  e.  CC
1918negnegi 9084 . . . . . . 7  |-  -u -u (
1  x.  ( B ^ 2 ) )  =  ( 1  x.  ( B ^ 2 ) )
2014mulid2i 8808 . . . . . . 7  |-  ( 1  x.  ( B ^
2 ) )  =  ( B ^ 2 )
2117, 19, 203eqtri 2282 . . . . . 6  |-  -u (
( _i  x.  B
) ^ 2 )  =  ( B ^
2 )
2221oveq2i 5803 . . . . 5  |-  ( ( A ^ 2 )  +  -u ( ( _i  x.  B ) ^
2 ) )  =  ( ( A ^
2 )  +  ( B ^ 2 ) )
232, 7subsqi 11181 . . . . 5  |-  ( ( A ^ 2 )  -  ( ( _i  x.  B ) ^
2 ) )  =  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )
249, 22, 233eqtr3ri 2287 . . . 4  |-  ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B
) ) )  =  ( ( A ^
2 )  +  ( B ^ 2 ) )
2524oveq1i 5802 . . 3  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B ) ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
26 neorian 2508 . . . . 5  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <->  -.  ( A  =  0  /\  B  =  0 ) )
27 sumsqeq0 11149 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0 ) )
281, 5, 27mp2an 656 . . . . . 6  |-  ( ( A  =  0  /\  B  =  0 )  <-> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  0 )
2928necon3bbii 2452 . . . . 5  |-  ( -.  ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0
)
3026, 29bitri 242 . . . 4  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <-> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =/=  0 )
312, 7addcli 8809 . . . . 5  |-  ( A  +  ( _i  x.  B ) )  e.  CC
322, 7subcli 9090 . . . . 5  |-  ( A  -  ( _i  x.  B ) )  e.  CC
333, 14addcli 8809 . . . . 5  |-  ( ( A ^ 2 )  +  ( B ^
2 ) )  e.  CC
3431, 32, 33divasszi 9478 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( A  +  ( _i  x.  B
) )  x.  (
( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) ) )
3530, 34sylbi 189 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B
) ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) ) )
36 divid 9419 . . . . 5  |-  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  CC  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =/=  0 )  ->  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  1 )
3733, 36mpan 654 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  =  1 )
3830, 37sylbi 189 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  1 )
3925, 35, 383eqtr3a 2314 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 )
4032, 33divclzi 9463 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  e.  CC )
4130, 40sylbi 189 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  e.  CC )
4231a1i 12 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
43 crne0 9707 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =/=  0  \/  B  =/=  0 )  <->  ( A  +  ( _i  x.  B ) )  =/=  0 ) )
441, 5, 43mp2an 656 . . . 4  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <-> 
( A  +  ( _i  x.  B ) )  =/=  0 )
4544biimpi 188 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( A  +  ( _i  x.  B
) )  =/=  0
)
46 divmul 9395 . . . 4  |-  ( ( 1  e.  CC  /\  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  e.  CC  /\  ( ( A  +  ( _i  x.  B
) )  e.  CC  /\  ( A  +  ( _i  x.  B ) )  =/=  0 ) )  ->  ( (
1  /  ( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4713, 46mp3an1 1269 . . 3  |-  ( ( ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  e.  CC  /\  ( ( A  +  ( _i  x.  B
) )  e.  CC  /\  ( A  +  ( _i  x.  B ) )  =/=  0 ) )  ->  ( (
1  /  ( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4841, 42, 45, 47syl12anc 1185 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( 1  /  ( A  +  ( _i  x.  B
) ) )  =  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4939, 48mpbird 225 1  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( 1  / 
( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421  (class class class)co 5792   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706   _ici 8707    + caddc 8708    x. cmul 8710    - cmin 9005   -ucneg 9006    / cdiv 9391   2c2 9763   ^cexp 11071
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-n0 9934  df-z 9993  df-uz 10199  df-seq 11014  df-exp 11072
  Copyright terms: Public domain W3C validator