MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crreczi Unicode version

Theorem crreczi 11228
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in [Apostol] p. 361. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Jeff Hankins, 16-Dec-2013.)
Hypotheses
Ref Expression
crrecz.1  |-  A  e.  RR
crrecz.2  |-  B  e.  RR
Assertion
Ref Expression
crreczi  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( 1  / 
( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )

Proof of Theorem crreczi
StepHypRef Expression
1 crrecz.1 . . . . . . . 8  |-  A  e.  RR
21recni 8851 . . . . . . 7  |-  A  e.  CC
32sqcli 11186 . . . . . 6  |-  ( A ^ 2 )  e.  CC
4 ax-icn 8798 . . . . . . . 8  |-  _i  e.  CC
5 crrecz.2 . . . . . . . . 9  |-  B  e.  RR
65recni 8851 . . . . . . . 8  |-  B  e.  CC
74, 6mulcli 8844 . . . . . . 7  |-  ( _i  x.  B )  e.  CC
87sqcli 11186 . . . . . 6  |-  ( ( _i  x.  B ) ^ 2 )  e.  CC
93, 8negsubi 9126 . . . . 5  |-  ( ( A ^ 2 )  +  -u ( ( _i  x.  B ) ^
2 ) )  =  ( ( A ^
2 )  -  (
( _i  x.  B
) ^ 2 ) )
104, 6sqmuli 11189 . . . . . . . . 9  |-  ( ( _i  x.  B ) ^ 2 )  =  ( ( _i ^
2 )  x.  ( B ^ 2 ) )
11 i2 11205 . . . . . . . . . 10  |-  ( _i
^ 2 )  = 
-u 1
1211oveq1i 5870 . . . . . . . . 9  |-  ( ( _i ^ 2 )  x.  ( B ^
2 ) )  =  ( -u 1  x.  ( B ^ 2 ) )
13 ax-1cn 8797 . . . . . . . . . 10  |-  1  e.  CC
146sqcli 11186 . . . . . . . . . 10  |-  ( B ^ 2 )  e.  CC
1513, 14mulneg1i 9227 . . . . . . . . 9  |-  ( -u
1  x.  ( B ^ 2 ) )  =  -u ( 1  x.  ( B ^ 2 ) )
1610, 12, 153eqtri 2309 . . . . . . . 8  |-  ( ( _i  x.  B ) ^ 2 )  = 
-u ( 1  x.  ( B ^ 2 ) )
1716negeqi 9047 . . . . . . 7  |-  -u (
( _i  x.  B
) ^ 2 )  =  -u -u ( 1  x.  ( B ^ 2 ) )
1813, 14mulcli 8844 . . . . . . . 8  |-  ( 1  x.  ( B ^
2 ) )  e.  CC
1918negnegi 9118 . . . . . . 7  |-  -u -u (
1  x.  ( B ^ 2 ) )  =  ( 1  x.  ( B ^ 2 ) )
2014mulid2i 8842 . . . . . . 7  |-  ( 1  x.  ( B ^
2 ) )  =  ( B ^ 2 )
2117, 19, 203eqtri 2309 . . . . . 6  |-  -u (
( _i  x.  B
) ^ 2 )  =  ( B ^
2 )
2221oveq2i 5871 . . . . 5  |-  ( ( A ^ 2 )  +  -u ( ( _i  x.  B ) ^
2 ) )  =  ( ( A ^
2 )  +  ( B ^ 2 ) )
232, 7subsqi 11216 . . . . 5  |-  ( ( A ^ 2 )  -  ( ( _i  x.  B ) ^
2 ) )  =  ( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )
249, 22, 233eqtr3ri 2314 . . . 4  |-  ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B
) ) )  =  ( ( A ^
2 )  +  ( B ^ 2 ) )
2524oveq1i 5870 . . 3  |-  ( ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B ) ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
26 neorian 2535 . . . . 5  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <->  -.  ( A  =  0  /\  B  =  0 ) )
27 sumsqeq0 11184 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  0 ) )
281, 5, 27mp2an 653 . . . . . 6  |-  ( ( A  =  0  /\  B  =  0 )  <-> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  0 )
2928necon3bbii 2479 . . . . 5  |-  ( -.  ( A  =  0  /\  B  =  0 )  <->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0
)
3026, 29bitri 240 . . . 4  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <-> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =/=  0 )
312, 7addcli 8843 . . . . 5  |-  ( A  +  ( _i  x.  B ) )  e.  CC
322, 7subcli 9124 . . . . 5  |-  ( A  -  ( _i  x.  B ) )  e.  CC
333, 14addcli 8843 . . . . 5  |-  ( ( A ^ 2 )  +  ( B ^
2 ) )  e.  CC
3431, 32, 33divasszi 9512 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( ( A  +  ( _i  x.  B
) )  x.  ( A  -  ( _i  x.  B ) ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )  =  ( ( A  +  ( _i  x.  B
) )  x.  (
( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) ) )
3530, 34sylbi 187 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B
) ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B ) )  /  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) ) )
36 divid 9453 . . . . 5  |-  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  CC  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =/=  0 )  ->  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  1 )
3733, 36mpan 651 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  =  1 )
3830, 37sylbi 187 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  =  1 )
3925, 35, 383eqtr3a 2341 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 )
4032, 33divclzi 9497 . . . 4  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =/=  0  ->  (
( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) )  e.  CC )
4130, 40sylbi 187 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  e.  CC )
4231a1i 10 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( A  +  ( _i  x.  B
) )  e.  CC )
43 crne0 9741 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =/=  0  \/  B  =/=  0 )  <->  ( A  +  ( _i  x.  B ) )  =/=  0 ) )
441, 5, 43mp2an 653 . . . 4  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <-> 
( A  +  ( _i  x.  B ) )  =/=  0 )
4544biimpi 186 . . 3  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( A  +  ( _i  x.  B
) )  =/=  0
)
46 divmul 9429 . . . 4  |-  ( ( 1  e.  CC  /\  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  e.  CC  /\  ( ( A  +  ( _i  x.  B
) )  e.  CC  /\  ( A  +  ( _i  x.  B ) )  =/=  0 ) )  ->  ( (
1  /  ( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4713, 46mp3an1 1264 . . 3  |-  ( ( ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  e.  CC  /\  ( ( A  +  ( _i  x.  B
) )  e.  CC  /\  ( A  +  ( _i  x.  B ) )  =/=  0 ) )  ->  ( (
1  /  ( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  ( _i  x.  B ) )  / 
( ( A ^
2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4841, 42, 45, 47syl12anc 1180 . 2  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( ( 1  /  ( A  +  ( _i  x.  B
) ) )  =  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) )  <->  ( ( A  +  ( _i  x.  B ) )  x.  ( ( A  -  ( _i  x.  B
) )  /  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )  =  1 ) )
4939, 48mpbird 223 1  |-  ( ( A  =/=  0  \/  B  =/=  0 )  ->  ( 1  / 
( A  +  ( _i  x.  B ) ) )  =  ( ( A  -  (
_i  x.  B )
)  /  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740   _ici 8741    + caddc 8742    x. cmul 8744    - cmin 9039   -ucneg 9040    / cdiv 9425   2c2 9797   ^cexp 11106
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-n0 9968  df-z 10027  df-uz 10233  df-seq 11049  df-exp 11107
  Copyright terms: Public domain W3C validator