HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  csmdsymi Unicode version

Theorem csmdsymi 23687
Description: Cross-symmetry implies M-symmetry. Theorem 1.9.1 of [MaedaMaeda] p. 3. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
csmdsym.1  |-  A  e. 
CH
csmdsym.2  |-  B  e. 
CH
Assertion
Ref Expression
csmdsymi  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  B  MH  A )
Distinct variable group:    B, c
Allowed substitution hint:    A( c)

Proof of Theorem csmdsymi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 incom 3478 . . . . . 6  |-  ( A  i^i  B )  =  ( B  i^i  A
)
21sseq1i 3317 . . . . 5  |-  ( ( A  i^i  B ) 
C_  x  <->  ( B  i^i  A )  C_  x
)
32biimpri 198 . . . 4  |-  ( ( B  i^i  A ) 
C_  x  ->  ( A  i^i  B )  C_  x )
4 csmdsym.2 . . . . . . . . . 10  |-  B  e. 
CH
5 chjcom 22858 . . . . . . . . . 10  |-  ( ( x  e.  CH  /\  B  e.  CH )  ->  ( x  vH  B
)  =  ( B  vH  x ) )
64, 5mpan2 653 . . . . . . . . 9  |-  ( x  e.  CH  ->  (
x  vH  B )  =  ( B  vH  x ) )
76ineq1d 3486 . . . . . . . 8  |-  ( x  e.  CH  ->  (
( x  vH  B
)  i^i  A )  =  ( ( B  vH  x )  i^i 
A ) )
8 incom 3478 . . . . . . . 8  |-  ( ( B  vH  x )  i^i  A )  =  ( A  i^i  ( B  vH  x ) )
97, 8syl6eq 2437 . . . . . . 7  |-  ( x  e.  CH  ->  (
( x  vH  B
)  i^i  A )  =  ( A  i^i  ( B  vH  x
) ) )
109ad2antlr 708 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( x  vH  B )  i^i 
A )  =  ( A  i^i  ( B  vH  x ) ) )
114a1i 11 . . . . . . . . 9  |-  ( x  e.  CH  ->  B  e.  CH )
12 id 20 . . . . . . . . 9  |-  ( x  e.  CH  ->  x  e.  CH )
13 csmdsym.1 . . . . . . . . . 10  |-  A  e. 
CH
1413a1i 11 . . . . . . . . 9  |-  ( x  e.  CH  ->  A  e.  CH )
1511, 12, 143jca 1134 . . . . . . . 8  |-  ( x  e.  CH  ->  ( B  e.  CH  /\  x  e.  CH  /\  A  e. 
CH ) )
1615ad2antlr 708 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( B  e. 
CH  /\  x  e.  CH 
/\  A  e.  CH ) )
17 inss2 3507 . . . . . . . . . . . . 13  |-  ( A  i^i  B )  C_  B
18 ssid 3312 . . . . . . . . . . . . 13  |-  B  C_  B
1917, 18pm3.2i 442 . . . . . . . . . . . 12  |-  ( ( A  i^i  B ) 
C_  B  /\  B  C_  B )
20 sseq2 3315 . . . . . . . . . . . . . . . . 17  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( A  i^i  B
)  C_  x  <->  ( A  i^i  B )  C_  if ( x  e.  CH ,  x ,  0H )
) )
21 sseq1 3314 . . . . . . . . . . . . . . . . 17  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
x  C_  A  <->  if (
x  e.  CH ,  x ,  0H )  C_  A ) )
2220, 21anbi12d 692 . . . . . . . . . . . . . . . 16  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( ( A  i^i  B )  C_  x  /\  x  C_  A )  <->  ( ( A  i^i  B )  C_  if ( x  e.  CH ,  x ,  0H )  /\  if ( x  e.  CH ,  x ,  0H )  C_  A
) ) )
23223anbi2d 1259 . . . . . . . . . . . . . . 15  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  <-> 
( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) ) ) )
24 breq1 4158 . . . . . . . . . . . . . . 15  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
x  MH  B  <->  if (
x  e.  CH ,  x ,  0H )  MH  B ) )
2523, 24imbi12d 312 . . . . . . . . . . . . . 14  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  x  MH  B )  <->  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  if ( x  e.  CH ,  x ,  0H )  MH  B ) ) )
26 h0elch 22607 . . . . . . . . . . . . . . . 16  |-  0H  e.  CH
2726elimel 3736 . . . . . . . . . . . . . . 15  |-  if ( x  e.  CH ,  x ,  0H )  e.  CH
2813, 4, 27, 4mdslmd4i 23686 . . . . . . . . . . . . . 14  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  if ( x  e.  CH ,  x ,  0H )  MH  B )
2925, 28dedth 3725 . . . . . . . . . . . . 13  |-  ( x  e.  CH  ->  (
( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  ->  x  MH  B
) )
3029com12 29 . . . . . . . . . . . 12  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  ->  ( x  e. 
CH  ->  x  MH  B
) )
3119, 30mp3an3 1268 . . . . . . . . . . 11  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  ->  ( x  e. 
CH  ->  x  MH  B
) )
3231imp 419 . . . . . . . . . 10  |-  ( ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  /\  x  e.  CH )  ->  x  MH  B
)
3332an32s 780 . . . . . . . . 9  |-  ( ( ( A  MH  B  /\  x  e.  CH )  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  ->  x  MH  B
)
3433adantlll 699 . . . . . . . 8  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  x  MH  B
)
35 breq1 4158 . . . . . . . . . . . 12  |-  ( c  =  x  ->  (
c  MH  B  <->  x  MH  B ) )
36 breq2 4159 . . . . . . . . . . . 12  |-  ( c  =  x  ->  ( B  MH*  c  <->  B  MH*  x ) )
3735, 36imbi12d 312 . . . . . . . . . . 11  |-  ( c  =  x  ->  (
( c  MH  B  ->  B  MH*  c )  <->  ( x  MH  B  ->  B  MH*  x ) ) )
3837rspccva 2996 . . . . . . . . . 10  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  x  e.  CH )  ->  ( x  MH  B  ->  B  MH*  x )
)
3938adantlr 696 . . . . . . . . 9  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
x  MH  B  ->  B  MH*  x ) )
4039adantr 452 . . . . . . . 8  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( x  MH  B  ->  B  MH*  x ) )
4134, 40mpd 15 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  B  MH*  x
)
42 simprr 734 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  x  C_  A
)
43 dmdi 23655 . . . . . . 7  |-  ( ( ( B  e.  CH  /\  x  e.  CH  /\  A  e.  CH )  /\  ( B  MH*  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( A  i^i  ( B  vH  x ) ) )
4416, 41, 42, 43syl12anc 1182 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( A  i^i  ( B  vH  x ) ) )
4513, 4chincli 22812 . . . . . . . . 9  |-  ( A  i^i  B )  e. 
CH
46 chjcom 22858 . . . . . . . . 9  |-  ( ( ( A  i^i  B
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  B )  vH  x )  =  ( x  vH  ( A  i^i  B ) ) )
4745, 46mpan 652 . . . . . . . 8  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  vH  x )  =  ( x  vH  ( A  i^i  B ) ) )
481oveq2i 6033 . . . . . . . 8  |-  ( x  vH  ( A  i^i  B ) )  =  ( x  vH  ( B  i^i  A ) )
4947, 48syl6eq 2437 . . . . . . 7  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  vH  x )  =  ( x  vH  ( B  i^i  A ) ) )
5049ad2antlr 708 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( x  vH  ( B  i^i  A ) ) )
5110, 44, 503eqtr2d 2427 . . . . 5  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( x  vH  B )  i^i 
A )  =  ( x  vH  ( B  i^i  A ) ) )
5251ex 424 . . . 4  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
( ( A  i^i  B )  C_  x  /\  x  C_  A )  -> 
( ( x  vH  B )  i^i  A
)  =  ( x  vH  ( B  i^i  A ) ) ) )
533, 52sylani 636 . . 3  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
( ( B  i^i  A )  C_  x  /\  x  C_  A )  -> 
( ( x  vH  B )  i^i  A
)  =  ( x  vH  ( B  i^i  A ) ) ) )
5453ralrimiva 2734 . 2  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  A. x  e.  CH  ( ( ( B  i^i  A ) 
C_  x  /\  x  C_  A )  ->  (
( x  vH  B
)  i^i  A )  =  ( x  vH  ( B  i^i  A ) ) ) )
554, 13mdsl2bi 23676 . 2  |-  ( B  MH  A  <->  A. x  e.  CH  ( ( ( B  i^i  A ) 
C_  x  /\  x  C_  A )  ->  (
( x  vH  B
)  i^i  A )  =  ( x  vH  ( B  i^i  A ) ) ) )
5654, 55sylibr 204 1  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  B  MH  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651    i^i cin 3264    C_ wss 3265   ifcif 3684   class class class wbr 4155  (class class class)co 6022   CHcch 22282    vH chj 22286   0Hc0h 22288    MH cmd 22319    MH* cdmd 22320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cc 8250  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003  ax-addf 9004  ax-mulf 9005  ax-hilex 22352  ax-hfvadd 22353  ax-hvcom 22354  ax-hvass 22355  ax-hv0cl 22356  ax-hvaddid 22357  ax-hfvmul 22358  ax-hvmulid 22359  ax-hvmulass 22360  ax-hvdistr1 22361  ax-hvdistr2 22362  ax-hvmul0 22363  ax-hfi 22431  ax-his1 22434  ax-his2 22435  ax-his3 22436  ax-his4 22437  ax-hcompl 22554
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-omul 6667  df-er 6843  df-map 6958  df-pm 6959  df-ixp 7002  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-oi 7414  df-card 7761  df-acn 7764  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-4 9994  df-5 9995  df-6 9996  df-7 9997  df-8 9998  df-9 9999  df-10 10000  df-n0 10156  df-z 10217  df-dec 10317  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ioo 10854  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-fl 11131  df-seq 11253  df-exp 11312  df-hash 11548  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-clim 12211  df-rlim 12212  df-sum 12409  df-struct 13400  df-ndx 13401  df-slot 13402  df-base 13403  df-sets 13404  df-ress 13405  df-plusg 13471  df-mulr 13472  df-starv 13473  df-sca 13474  df-vsca 13475  df-tset 13477  df-ple 13478  df-ds 13480  df-unif 13481  df-hom 13482  df-cco 13483  df-rest 13579  df-topn 13580  df-topgen 13596  df-pt 13597  df-prds 13600  df-xrs 13655  df-0g 13656  df-gsum 13657  df-qtop 13662  df-imas 13663  df-xps 13665  df-mre 13740  df-mrc 13741  df-acs 13743  df-mnd 14619  df-submnd 14668  df-mulg 14744  df-cntz 15045  df-cmn 15343  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-fbas 16625  df-fg 16626  df-cnfld 16629  df-top 16888  df-bases 16890  df-topon 16891  df-topsp 16892  df-cld 17008  df-ntr 17009  df-cls 17010  df-nei 17087  df-cn 17215  df-cnp 17216  df-lm 17217  df-haus 17303  df-tx 17517  df-hmeo 17710  df-fil 17801  df-fm 17893  df-flim 17894  df-flf 17895  df-xms 18261  df-ms 18262  df-tms 18263  df-cfil 19081  df-cau 19082  df-cmet 19083  df-grpo 21629  df-gid 21630  df-ginv 21631  df-gdiv 21632  df-ablo 21720  df-subgo 21740  df-vc 21875  df-nv 21921  df-va 21924  df-ba 21925  df-sm 21926  df-0v 21927  df-vs 21928  df-nmcv 21929  df-ims 21930  df-dip 22047  df-ssp 22071  df-ph 22164  df-cbn 22215  df-hnorm 22321  df-hba 22322  df-hvsub 22324  df-hlim 22325  df-hcau 22326  df-sh 22559  df-ch 22574  df-oc 22604  df-ch0 22605  df-shs 22660  df-chj 22662  df-md 23633  df-dmd 23634
  Copyright terms: Public domain W3C validator