HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  csmdsymi Unicode version

Theorem csmdsymi 22906
Description: Cross-symmetry implies M-symmetry. Theorem 1.9.1 of [MaedaMaeda] p. 3. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
csmdsym.1  |-  A  e. 
CH
csmdsym.2  |-  B  e. 
CH
Assertion
Ref Expression
csmdsymi  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  B  MH  A )
Distinct variable group:    B, c
Dummy variable  x is distinct from all other variables.
Allowed substitution hint:    A( c)

Proof of Theorem csmdsymi
StepHypRef Expression
1 incom 3362 . . . . . 6  |-  ( A  i^i  B )  =  ( B  i^i  A
)
21sseq1i 3203 . . . . 5  |-  ( ( A  i^i  B ) 
C_  x  <->  ( B  i^i  A )  C_  x
)
32biimpri 199 . . . 4  |-  ( ( B  i^i  A ) 
C_  x  ->  ( A  i^i  B )  C_  x )
4 csmdsym.2 . . . . . . . . . 10  |-  B  e. 
CH
5 chjcom 22077 . . . . . . . . . 10  |-  ( ( x  e.  CH  /\  B  e.  CH )  ->  ( x  vH  B
)  =  ( B  vH  x ) )
64, 5mpan2 654 . . . . . . . . 9  |-  ( x  e.  CH  ->  (
x  vH  B )  =  ( B  vH  x ) )
76ineq1d 3370 . . . . . . . 8  |-  ( x  e.  CH  ->  (
( x  vH  B
)  i^i  A )  =  ( ( B  vH  x )  i^i 
A ) )
8 incom 3362 . . . . . . . 8  |-  ( ( B  vH  x )  i^i  A )  =  ( A  i^i  ( B  vH  x ) )
97, 8syl6eq 2332 . . . . . . 7  |-  ( x  e.  CH  ->  (
( x  vH  B
)  i^i  A )  =  ( A  i^i  ( B  vH  x
) ) )
109ad2antlr 709 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( x  vH  B )  i^i 
A )  =  ( A  i^i  ( B  vH  x ) ) )
114a1i 12 . . . . . . . . 9  |-  ( x  e.  CH  ->  B  e.  CH )
12 id 21 . . . . . . . . 9  |-  ( x  e.  CH  ->  x  e.  CH )
13 csmdsym.1 . . . . . . . . . 10  |-  A  e. 
CH
1413a1i 12 . . . . . . . . 9  |-  ( x  e.  CH  ->  A  e.  CH )
1511, 12, 143jca 1134 . . . . . . . 8  |-  ( x  e.  CH  ->  ( B  e.  CH  /\  x  e.  CH  /\  A  e. 
CH ) )
1615ad2antlr 709 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( B  e. 
CH  /\  x  e.  CH 
/\  A  e.  CH ) )
17 inss2 3391 . . . . . . . . . . . . 13  |-  ( A  i^i  B )  C_  B
18 ssid 3198 . . . . . . . . . . . . 13  |-  B  C_  B
1917, 18pm3.2i 443 . . . . . . . . . . . 12  |-  ( ( A  i^i  B ) 
C_  B  /\  B  C_  B )
20 sseq2 3201 . . . . . . . . . . . . . . . . 17  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( A  i^i  B
)  C_  x  <->  ( A  i^i  B )  C_  if ( x  e.  CH ,  x ,  0H )
) )
21 sseq1 3200 . . . . . . . . . . . . . . . . 17  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
x  C_  A  <->  if (
x  e.  CH ,  x ,  0H )  C_  A ) )
2220, 21anbi12d 693 . . . . . . . . . . . . . . . 16  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( ( A  i^i  B )  C_  x  /\  x  C_  A )  <->  ( ( A  i^i  B )  C_  if ( x  e.  CH ,  x ,  0H )  /\  if ( x  e.  CH ,  x ,  0H )  C_  A
) ) )
23223anbi2d 1259 . . . . . . . . . . . . . . 15  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  <-> 
( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) ) ) )
24 breq1 4027 . . . . . . . . . . . . . . 15  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
x  MH  B  <->  if (
x  e.  CH ,  x ,  0H )  MH  B ) )
2523, 24imbi12d 313 . . . . . . . . . . . . . 14  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  x  MH  B )  <->  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  if ( x  e.  CH ,  x ,  0H )  MH  B ) ) )
26 h0elch 21826 . . . . . . . . . . . . . . . 16  |-  0H  e.  CH
2726elimel 3618 . . . . . . . . . . . . . . 15  |-  if ( x  e.  CH ,  x ,  0H )  e.  CH
2813, 4, 27, 4mdslmd4i 22905 . . . . . . . . . . . . . 14  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  if ( x  e.  CH ,  x ,  0H )  MH  B )
2925, 28dedth 3607 . . . . . . . . . . . . 13  |-  ( x  e.  CH  ->  (
( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  ->  x  MH  B
) )
3029com12 29 . . . . . . . . . . . 12  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  ->  ( x  e. 
CH  ->  x  MH  B
) )
3119, 30mp3an3 1268 . . . . . . . . . . 11  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  ->  ( x  e. 
CH  ->  x  MH  B
) )
3231imp 420 . . . . . . . . . 10  |-  ( ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  /\  x  e.  CH )  ->  x  MH  B
)
3332an32s 781 . . . . . . . . 9  |-  ( ( ( A  MH  B  /\  x  e.  CH )  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  ->  x  MH  B
)
3433adantlll 700 . . . . . . . 8  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  x  MH  B
)
35 breq1 4027 . . . . . . . . . . . 12  |-  ( c  =  x  ->  (
c  MH  B  <->  x  MH  B ) )
36 breq2 4028 . . . . . . . . . . . 12  |-  ( c  =  x  ->  ( B  MH*  c  <->  B  MH*  x ) )
3735, 36imbi12d 313 . . . . . . . . . . 11  |-  ( c  =  x  ->  (
( c  MH  B  ->  B  MH*  c )  <->  ( x  MH  B  ->  B  MH*  x ) ) )
3837rspccva 2884 . . . . . . . . . 10  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  x  e.  CH )  ->  ( x  MH  B  ->  B  MH*  x )
)
3938adantlr 697 . . . . . . . . 9  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
x  MH  B  ->  B  MH*  x ) )
4039adantr 453 . . . . . . . 8  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( x  MH  B  ->  B  MH*  x ) )
4134, 40mpd 16 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  B  MH*  x
)
42 simprr 735 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  x  C_  A
)
43 dmdi 22874 . . . . . . 7  |-  ( ( ( B  e.  CH  /\  x  e.  CH  /\  A  e.  CH )  /\  ( B  MH*  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( A  i^i  ( B  vH  x ) ) )
4416, 41, 42, 43syl12anc 1182 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( A  i^i  ( B  vH  x ) ) )
4513, 4chincli 22031 . . . . . . . . 9  |-  ( A  i^i  B )  e. 
CH
46 chjcom 22077 . . . . . . . . 9  |-  ( ( ( A  i^i  B
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  B )  vH  x )  =  ( x  vH  ( A  i^i  B ) ) )
4745, 46mpan 653 . . . . . . . 8  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  vH  x )  =  ( x  vH  ( A  i^i  B ) ) )
481oveq2i 5830 . . . . . . . 8  |-  ( x  vH  ( A  i^i  B ) )  =  ( x  vH  ( B  i^i  A ) )
4947, 48syl6eq 2332 . . . . . . 7  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  vH  x )  =  ( x  vH  ( B  i^i  A ) ) )
5049ad2antlr 709 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( x  vH  ( B  i^i  A ) ) )
5110, 44, 503eqtr2d 2322 . . . . 5  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( x  vH  B )  i^i 
A )  =  ( x  vH  ( B  i^i  A ) ) )
5251ex 425 . . . 4  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
( ( A  i^i  B )  C_  x  /\  x  C_  A )  -> 
( ( x  vH  B )  i^i  A
)  =  ( x  vH  ( B  i^i  A ) ) ) )
533, 52sylani 637 . . 3  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
( ( B  i^i  A )  C_  x  /\  x  C_  A )  -> 
( ( x  vH  B )  i^i  A
)  =  ( x  vH  ( B  i^i  A ) ) ) )
5453ralrimiva 2627 . 2  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  A. x  e.  CH  ( ( ( B  i^i  A ) 
C_  x  /\  x  C_  A )  ->  (
( x  vH  B
)  i^i  A )  =  ( x  vH  ( B  i^i  A ) ) ) )
554, 13mdsl2bi 22895 . 2  |-  ( B  MH  A  <->  A. x  e.  CH  ( ( ( B  i^i  A ) 
C_  x  /\  x  C_  A )  ->  (
( x  vH  B
)  i^i  A )  =  ( x  vH  ( B  i^i  A ) ) ) )
5654, 55sylibr 205 1  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  B  MH  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   A.wral 2544    i^i cin 3152    C_ wss 3153   ifcif 3566   class class class wbr 4024  (class class class)co 5819   CHcch 21501    vH chj 21505   0Hc0h 21507    MH cmd 21538    MH* cdmd 21539
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cc 8056  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812  ax-hilex 21571  ax-hfvadd 21572  ax-hvcom 21573  ax-hvass 21574  ax-hv0cl 21575  ax-hvaddid 21576  ax-hfvmul 21577  ax-hvmulid 21578  ax-hvmulass 21579  ax-hvdistr1 21580  ax-hvdistr2 21581  ax-hvmul0 21582  ax-hfi 21650  ax-his1 21653  ax-his2 21654  ax-his3 21655  ax-his4 21656  ax-hcompl 21773
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-seq 11041  df-exp 11099  df-hash 11332  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-clim 11956  df-rlim 11957  df-sum 12153  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-submnd 14410  df-mulg 14486  df-cntz 14787  df-cmn 15085  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-cn 16951  df-cnp 16952  df-lm 16953  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cfil 18675  df-cau 18676  df-cmet 18677  df-grpo 20850  df-gid 20851  df-ginv 20852  df-gdiv 20853  df-ablo 20941  df-subgo 20961  df-vc 21094  df-nv 21140  df-va 21143  df-ba 21144  df-sm 21145  df-0v 21146  df-vs 21147  df-nmcv 21148  df-ims 21149  df-dip 21266  df-ssp 21290  df-ph 21383  df-cbn 21434  df-hnorm 21540  df-hba 21541  df-hvsub 21543  df-hlim 21544  df-hcau 21545  df-sh 21778  df-ch 21793  df-oc 21823  df-ch0 21824  df-shs 21879  df-chj 21881  df-md 22852  df-dmd 22853
  Copyright terms: Public domain W3C validator