MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cubic Unicode version

Theorem cubic 20147
Description: The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 3691 to convert the existential quantifier to a triple disjunction. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cubic.r  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
cubic.a  |-  ( ph  ->  A  e.  CC )
cubic.z  |-  ( ph  ->  A  =/=  0 )
cubic.b  |-  ( ph  ->  B  e.  CC )
cubic.c  |-  ( ph  ->  C  e.  CC )
cubic.d  |-  ( ph  ->  D  e.  CC )
cubic.x  |-  ( ph  ->  X  e.  CC )
cubic.t  |-  ( ph  ->  T  =  ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^ c  ( 1  /  3 ) ) )
cubic.g  |-  ( ph  ->  G  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
cubic.m  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
cubic.n  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
cubic.0  |-  ( ph  ->  M  =/=  0 )
Assertion
Ref Expression
cubic  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
Distinct variable groups:    A, r    B, r    M, r    N, r    ph, r    T, r    X, r
Allowed substitution hints:    C( r)    D( r)    R( r)    G( r)

Proof of Theorem cubic
StepHypRef Expression
1 cubic.a . . 3  |-  ( ph  ->  A  e.  CC )
2 cubic.z . . 3  |-  ( ph  ->  A  =/=  0 )
3 cubic.b . . 3  |-  ( ph  ->  B  e.  CC )
4 cubic.c . . 3  |-  ( ph  ->  C  e.  CC )
5 cubic.d . . 3  |-  ( ph  ->  D  e.  CC )
6 cubic.x . . 3  |-  ( ph  ->  X  e.  CC )
7 cubic.t . . . 4  |-  ( ph  ->  T  =  ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^ c  ( 1  /  3 ) ) )
8 cubic.n . . . . . . . 8  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
9 2cn 9818 . . . . . . . . . . 11  |-  2  e.  CC
10 3nn0 9985 . . . . . . . . . . . 12  |-  3  e.  NN0
11 expcl 11123 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
123, 10, 11sylancl 643 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 3 )  e.  CC )
13 mulcl 8823 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( B ^ 3 )  e.  CC )  -> 
( 2  x.  ( B ^ 3 ) )  e.  CC )
149, 12, 13sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( B ^ 3 ) )  e.  CC )
15 9nn 9886 . . . . . . . . . . . . 13  |-  9  e.  NN
1615nncni 9758 . . . . . . . . . . . 12  |-  9  e.  CC
17 mulcl 8823 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  A  e.  CC )  ->  ( 9  x.  A
)  e.  CC )
1816, 1, 17sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  ( 9  x.  A
)  e.  CC )
193, 4mulcld 8857 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  C
)  e.  CC )
2018, 19mulcld 8857 . . . . . . . . . 10  |-  ( ph  ->  ( ( 9  x.  A )  x.  ( B  x.  C )
)  e.  CC )
2114, 20subcld 9159 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( B ^ 3 ) )  -  (
( 9  x.  A
)  x.  ( B  x.  C ) ) )  e.  CC )
22 2nn0 9984 . . . . . . . . . . . 12  |-  2  e.  NN0
23 7nn 9884 . . . . . . . . . . . 12  |-  7  e.  NN
2422, 23decnncl 10139 . . . . . . . . . . 11  |- ; 2 7  e.  NN
2524nncni 9758 . . . . . . . . . 10  |- ; 2 7  e.  CC
261sqcld 11245 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
2726, 5mulcld 8857 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  x.  D
)  e.  CC )
28 mulcl 8823 . . . . . . . . . 10  |-  ( (; 2
7  e.  CC  /\  ( ( A ^
2 )  x.  D
)  e.  CC )  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
2925, 27, 28sylancr 644 . . . . . . . . 9  |-  ( ph  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
3021, 29addcld 8856 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( B ^
3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C )
) )  +  (; 2
7  x.  ( ( A ^ 2 )  x.  D ) ) )  e.  CC )
318, 30eqeltrd 2359 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
32 cubic.g . . . . . . . . 9  |-  ( ph  ->  G  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
3331sqcld 11245 . . . . . . . . . 10  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
34 4cn 9822 . . . . . . . . . . 11  |-  4  e.  CC
35 cubic.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
363sqcld 11245 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
37 3cn 9820 . . . . . . . . . . . . . . 15  |-  3  e.  CC
381, 4mulcld 8857 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  x.  C
)  e.  CC )
39 mulcl 8823 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( A  x.  C
)  e.  CC )  ->  ( 3  x.  ( A  x.  C
) )  e.  CC )
4037, 38, 39sylancr 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  ( A  x.  C )
)  e.  CC )
4136, 40subcld 9159 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B ^
2 )  -  (
3  x.  ( A  x.  C ) ) )  e.  CC )
4235, 41eqeltrd 2359 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  CC )
43 expcl 11123 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
4442, 10, 43sylancl 643 . . . . . . . . . . 11  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
45 mulcl 8823 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  ( M ^ 3 )  e.  CC )  -> 
( 4  x.  ( M ^ 3 ) )  e.  CC )
4634, 44, 45sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  e.  CC )
4733, 46subcld 9159 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
4  x.  ( M ^ 3 ) ) )  e.  CC )
4832, 47eqeltrd 2359 . . . . . . . 8  |-  ( ph  ->  G  e.  CC )
4948sqrcld 11921 . . . . . . 7  |-  ( ph  ->  ( sqr `  G
)  e.  CC )
5031, 49addcld 8856 . . . . . 6  |-  ( ph  ->  ( N  +  ( sqr `  G ) )  e.  CC )
5150halfcld 9958 . . . . 5  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC )
52 3ne0 9833 . . . . . 6  |-  3  =/=  0
5337, 52reccli 9492 . . . . 5  |-  ( 1  /  3 )  e.  CC
54 cxpcl 20023 . . . . 5  |-  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC  /\  (
1  /  3 )  e.  CC )  -> 
( ( ( N  +  ( sqr `  G
) )  /  2
)  ^ c  ( 1  /  3 ) )  e.  CC )
5551, 53, 54sylancl 643 . . . 4  |-  ( ph  ->  ( ( ( N  +  ( sqr `  G
) )  /  2
)  ^ c  ( 1  /  3 ) )  e.  CC )
567, 55eqeltrd 2359 . . 3  |-  ( ph  ->  T  e.  CC )
577oveq1d 5875 . . . 4  |-  ( ph  ->  ( T ^ 3 )  =  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^ c  ( 1  /  3 ) ) ^ 3 ) )
58 3nn 9880 . . . . 5  |-  3  e.  NN
59 cxproot 20039 . . . . 5  |-  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC  /\  3  e.  NN )  ->  (
( ( ( N  +  ( sqr `  G
) )  /  2
)  ^ c  ( 1  /  3 ) ) ^ 3 )  =  ( ( N  +  ( sqr `  G
) )  /  2
) )
6051, 58, 59sylancl 643 . . . 4  |-  ( ph  ->  ( ( ( ( N  +  ( sqr `  G ) )  / 
2 )  ^ c 
( 1  /  3
) ) ^ 3 )  =  ( ( N  +  ( sqr `  G ) )  / 
2 ) )
6157, 60eqtrd 2317 . . 3  |-  ( ph  ->  ( T ^ 3 )  =  ( ( N  +  ( sqr `  G ) )  / 
2 ) )
6248sqsqrd 11923 . . . 4  |-  ( ph  ->  ( ( sqr `  G
) ^ 2 )  =  G )
6362, 32eqtrd 2317 . . 3  |-  ( ph  ->  ( ( sqr `  G
) ^ 2 )  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
649a1i 10 . . . . . 6  |-  ( ph  ->  2  e.  CC )
6534a1i 10 . . . . . . . . 9  |-  ( ph  ->  4  e.  CC )
66 4nn 9881 . . . . . . . . . . 11  |-  4  e.  NN
6766nnne0i 9782 . . . . . . . . . 10  |-  4  =/=  0
6867a1i 10 . . . . . . . . 9  |-  ( ph  ->  4  =/=  0 )
69 cubic.0 . . . . . . . . . 10  |-  ( ph  ->  M  =/=  0 )
7010nn0zi 10050 . . . . . . . . . . 11  |-  3  e.  ZZ
7170a1i 10 . . . . . . . . . 10  |-  ( ph  ->  3  e.  ZZ )
7242, 69, 71expne0d 11253 . . . . . . . . 9  |-  ( ph  ->  ( M ^ 3 )  =/=  0 )
7365, 44, 68, 72mulne0d 9422 . . . . . . . 8  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  =/=  0 )
7463oveq2d 5876 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N ^ 2 )  -  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) ) )
75 subsq 11212 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  ( sqr `  G )  e.  CC )  -> 
( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) ) )
7631, 49, 75syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) ) )
7733, 46nncand 9164 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( N ^ 2 )  -  ( 4  x.  ( M ^
3 ) ) ) )  =  ( 4  x.  ( M ^
3 ) ) )
7874, 76, 773eqtr3d 2325 . . . . . . . 8  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =  ( 4  x.  ( M ^ 3 ) ) )
7931, 49subcld 9159 . . . . . . . . 9  |-  ( ph  ->  ( N  -  ( sqr `  G ) )  e.  CC )
8079mul02d 9012 . . . . . . . 8  |-  ( ph  ->  ( 0  x.  ( N  -  ( sqr `  G ) ) )  =  0 )
8173, 78, 803netr4d 2475 . . . . . . 7  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =/=  ( 0  x.  ( N  -  ( sqr `  G ) ) ) )
82 oveq1 5867 . . . . . . . 8  |-  ( ( N  +  ( sqr `  G ) )  =  0  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) )  =  ( 0  x.  ( N  -  ( sqr `  G ) ) ) )
8382necon3i 2487 . . . . . . 7  |-  ( ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =/=  ( 0  x.  ( N  -  ( sqr `  G ) ) )  ->  ( N  +  ( sqr `  G ) )  =/=  0 )
8481, 83syl 15 . . . . . 6  |-  ( ph  ->  ( N  +  ( sqr `  G ) )  =/=  0 )
85 2ne0 9831 . . . . . . 7  |-  2  =/=  0
8685a1i 10 . . . . . 6  |-  ( ph  ->  2  =/=  0 )
8750, 64, 84, 86divne0d 9554 . . . . 5  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  /  2 )  =/=  0 )
8853a1i 10 . . . . 5  |-  ( ph  ->  ( 1  /  3
)  e.  CC )
8951, 87, 88cxpne0d 20062 . . . 4  |-  ( ph  ->  ( ( ( N  +  ( sqr `  G
) )  /  2
)  ^ c  ( 1  /  3 ) )  =/=  0 )
907, 89eqnetrd 2466 . . 3  |-  ( ph  ->  T  =/=  0 )
911, 2, 3, 4, 5, 6, 56, 61, 49, 63, 35, 8, 90cubic2 20146 . 2  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  CC  (
( r ^ 3 )  =  1  /\  X  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) ) ) )
92 cubic.r . . . . . 6  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
93921cubr 20140 . . . . 5  |-  ( r  e.  R  <->  ( r  e.  CC  /\  ( r ^ 3 )  =  1 ) )
9493anbi1i 676 . . . 4  |-  ( ( r  e.  R  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )  <-> 
( ( r  e.  CC  /\  ( r ^ 3 )  =  1 )  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
95 anass 630 . . . 4  |-  ( ( ( r  e.  CC  /\  ( r ^ 3 )  =  1 )  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) )  <->  ( r  e.  CC  /\  ( ( r ^ 3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) ) )
9694, 95bitri 240 . . 3  |-  ( ( r  e.  R  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )  <-> 
( r  e.  CC  /\  ( ( r ^
3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) ) ) )
9796rexbii2 2574 . 2  |-  ( E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) )  <->  E. r  e.  CC  ( ( r ^ 3 )  =  1  /\  X  = 
-u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
9891, 97syl6bbr 254 1  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   E.wrex 2546   {ctp 3644   ` cfv 5257  (class class class)co 5860   CCcc 8737   0cc0 8739   1c1 8740   _ici 8741    + caddc 8742    x. cmul 8744    - cmin 9039   -ucneg 9040    / cdiv 9425   NNcn 9748   2c2 9797   3c3 9798   4c4 9799   7c7 9802   9c9 9804   NN0cn0 9967   ZZcz 10026  ;cdc 10126   ^cexp 11106   sqrcsqr 11720    ^ c ccxp 19915
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354  df-pi 12356  df-dvds 12534  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-submnd 14418  df-mulg 14494  df-cntz 14795  df-cmn 15093  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-log 19916  df-cxp 19917
  Copyright terms: Public domain W3C validator