HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr Unicode version

Theorem cvbr 22856
Description: Binary relation expressing  B covers  A, which means that  B is larger than  A and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) ) )
Distinct variable groups:    x, A    x, B
Dummy variables  y  z are mutually distinct and distinct from all other variables.

Proof of Theorem cvbr
StepHypRef Expression
1 eleq1 2346 . . . . 5  |-  ( y  =  A  ->  (
y  e.  CH  <->  A  e.  CH ) )
21anbi1d 687 . . . 4  |-  ( y  =  A  ->  (
( y  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  z  e.  CH )
) )
3 psseq1 3266 . . . . 5  |-  ( y  =  A  ->  (
y  C.  z  <->  A  C.  z ) )
4 psseq1 3266 . . . . . . . 8  |-  ( y  =  A  ->  (
y  C.  x  <->  A  C.  x ) )
54anbi1d 687 . . . . . . 7  |-  ( y  =  A  ->  (
( y  C.  x  /\  x  C.  z )  <-> 
( A  C.  x  /\  x  C.  z ) ) )
65rexbidv 2567 . . . . . 6  |-  ( y  =  A  ->  ( E. x  e.  CH  (
y  C.  x  /\  x  C.  z )  <->  E. x  e.  CH  ( A  C.  x  /\  x  C.  z
) ) )
76notbid 287 . . . . 5  |-  ( y  =  A  ->  ( -.  E. x  e.  CH  ( y  C.  x  /\  x  C.  z )  <->  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  z ) ) )
83, 7anbi12d 693 . . . 4  |-  ( y  =  A  ->  (
( y  C.  z  /\  -.  E. x  e. 
CH  ( y  C.  x  /\  x  C.  z
) )  <->  ( A  C.  z  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  z ) ) ) )
92, 8anbi12d 693 . . 3  |-  ( y  =  A  ->  (
( ( y  e. 
CH  /\  z  e.  CH )  /\  ( y 
C.  z  /\  -.  E. x  e.  CH  (
y  C.  x  /\  x  C.  z ) ) )  <->  ( ( A  e.  CH  /\  z  e.  CH )  /\  ( A  C.  z  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  z ) ) ) ) )
10 eleq1 2346 . . . . 5  |-  ( z  =  B  ->  (
z  e.  CH  <->  B  e.  CH ) )
1110anbi2d 686 . . . 4  |-  ( z  =  B  ->  (
( A  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  B  e.  CH )
) )
12 psseq2 3267 . . . . 5  |-  ( z  =  B  ->  ( A  C.  z  <->  A  C.  B ) )
13 psseq2 3267 . . . . . . . 8  |-  ( z  =  B  ->  (
x  C.  z  <->  x  C.  B ) )
1413anbi2d 686 . . . . . . 7  |-  ( z  =  B  ->  (
( A  C.  x  /\  x  C.  z )  <-> 
( A  C.  x  /\  x  C.  B ) ) )
1514rexbidv 2567 . . . . . 6  |-  ( z  =  B  ->  ( E. x  e.  CH  ( A  C.  x  /\  x  C.  z )  <->  E. x  e.  CH  ( A  C.  x  /\  x  C.  B
) ) )
1615notbid 287 . . . . 5  |-  ( z  =  B  ->  ( -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  z )  <->  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  B
) ) )
1712, 16anbi12d 693 . . . 4  |-  ( z  =  B  ->  (
( A  C.  z  /\  -.  E. x  e. 
CH  ( A  C.  x  /\  x  C.  z
) )  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) ) )
1811, 17anbi12d 693 . . 3  |-  ( z  =  B  ->  (
( ( A  e. 
CH  /\  z  e.  CH )  /\  ( A 
C.  z  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  z ) ) )  <-> 
( ( A  e. 
CH  /\  B  e.  CH )  /\  ( A 
C.  B  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  B ) ) ) ) )
19 df-cv 22853 . . 3  |-  <oH  =  { <. y ,  z >.  |  ( ( y  e.  CH  /\  z  e.  CH )  /\  (
y  C.  z  /\  -.  E. x  e.  CH  ( y  C.  x  /\  x  C.  z ) ) ) }
209, 18, 19brabg 4285 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  ( A  C.  B  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  B ) ) ) ) )
2120bianabs 852 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1625    e. wcel 1687   E.wrex 2547    C. wpss 3156   class class class wbr 4026   CHcch 21503    <oH ccv 21538
This theorem is referenced by:  cvbr2  22857  cvcon3  22858  cvpss  22859  cvnbtwn  22860
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-sep 4144  ax-nul 4152  ax-pr 4215
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-rex 2552  df-rab 2555  df-v 2793  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-sn 3649  df-pr 3650  df-op 3652  df-br 4027  df-opab 4081  df-cv 22853
  Copyright terms: Public domain W3C validator