HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr2 Unicode version

Theorem cvbr2 22809
Description: Binary relation expressing  B covers  A. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( A  C.  B  /\  A. x  e.  CH  ( ( A 
C.  x  /\  x  C_  B )  ->  x  =  B ) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem cvbr2
StepHypRef Expression
1 cvbr 22808 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) ) )
2 iman 415 . . . . . 6  |-  ( ( ( A  C.  x  /\  x  C_  B )  ->  x  =  B )  <->  -.  ( ( A  C.  x  /\  x  C_  B )  /\  -.  x  =  B )
)
3 anass 633 . . . . . . 7  |-  ( ( ( A  C.  x  /\  x  C_  B )  /\  -.  x  =  B )  <->  ( A  C.  x  /\  (
x  C_  B  /\  -.  x  =  B
) ) )
4 dfpss2 3222 . . . . . . . 8  |-  ( x 
C.  B  <->  ( x  C_  B  /\  -.  x  =  B ) )
54anbi2i 678 . . . . . . 7  |-  ( ( A  C.  x  /\  x  C.  B )  <->  ( A  C.  x  /\  (
x  C_  B  /\  -.  x  =  B
) ) )
63, 5bitr4i 245 . . . . . 6  |-  ( ( ( A  C.  x  /\  x  C_  B )  /\  -.  x  =  B )  <->  ( A  C.  x  /\  x  C.  B ) )
72, 6xchbinx 303 . . . . 5  |-  ( ( ( A  C.  x  /\  x  C_  B )  ->  x  =  B )  <->  -.  ( A  C.  x  /\  x  C.  B ) )
87ralbii 2540 . . . 4  |-  ( A. x  e.  CH  ( ( A  C.  x  /\  x  C_  B )  ->  x  =  B )  <->  A. x  e.  CH  -.  ( A  C.  x  /\  x  C.  B ) )
9 ralnex 2526 . . . 4  |-  ( A. x  e.  CH  -.  ( A  C.  x  /\  x  C.  B )  <->  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  B
) )
108, 9bitri 242 . . 3  |-  ( A. x  e.  CH  ( ( A  C.  x  /\  x  C_  B )  ->  x  =  B )  <->  -. 
E. x  e.  CH  ( A  C.  x  /\  x  C.  B ) )
1110anbi2i 678 . 2  |-  ( ( A  C.  B  /\  A. x  e.  CH  (
( A  C.  x  /\  x  C_  B )  ->  x  =  B ) )  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) )
121, 11syl6bbr 256 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( A  C.  B  /\  A. x  e.  CH  ( ( A 
C.  x  /\  x  C_  B )  ->  x  =  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   E.wrex 2517    C_ wss 3113    C. wpss 3114   class class class wbr 3983   CHcch 21455    <oH ccv 21490
This theorem is referenced by:  spansncv2  22819  elat2  22866
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-br 3984  df-opab 4038  df-cv 22805
  Copyright terms: Public domain W3C validator