MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvjust Structured version   Unicode version

Theorem cvjust 2433
Description: Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a set variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1652, which allows us to substitute a set variable for a class variable. See also cab 2424 and df-clab 2425. Note that this is not a rigorous justification, because cv 1652 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
cvjust  |-  x  =  { y  |  y  e.  x }
Distinct variable group:    x, y

Proof of Theorem cvjust
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2432 . 2  |-  ( x  =  { y  |  y  e.  x }  <->  A. z ( z  e.  x  <->  z  e.  {
y  |  y  e.  x } ) )
2 df-clab 2425 . . 3  |-  ( z  e.  { y  |  y  e.  x }  <->  [ z  /  y ] y  e.  x )
3 elsb3 2181 . . 3  |-  ( [ z  /  y ] y  e.  x  <->  z  e.  x )
42, 3bitr2i 243 . 2  |-  ( z  e.  x  <->  z  e.  { y  |  y  e.  x } )
51, 4mpgbir 1560 1  |-  x  =  { y  |  y  e.  x }
Colors of variables: wff set class
Syntax hints:    <-> wb 178    = wceq 1653   [wsb 1659    e. wcel 1726   {cab 2424
This theorem is referenced by:  cnambfre  26267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431
  Copyright terms: Public domain W3C validator