Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvr1 Structured version   Unicode version

Theorem cvlcvr1 30139
Description: The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 23860 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvr1.b  |-  B  =  ( Base `  K
)
cvlcvr1.l  |-  .<_  =  ( le `  K )
cvlcvr1.j  |-  .\/  =  ( join `  K )
cvlcvr1.c  |-  C  =  (  <o  `  K )
cvlcvr1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlcvr1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <->  X C
( X  .\/  P
) ) )

Proof of Theorem cvlcvr1
Dummy variables  z 
q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp13 990 . . . . . . 7  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  K  e.  CvLat )
2 cvllat 30126 . . . . . . 7  |-  ( K  e.  CvLat  ->  K  e.  Lat )
31, 2syl 16 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  K  e.  Lat )
4 simp2 959 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  X  e.  B )
5 cvlcvr1.b . . . . . . . 8  |-  B  =  ( Base `  K
)
6 cvlcvr1.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
75, 6atbase 30089 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
873ad2ant3 981 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  P  e.  B )
9 cvlcvr1.l . . . . . . 7  |-  .<_  =  ( le `  K )
10 eqid 2438 . . . . . . 7  |-  ( lt
`  K )  =  ( lt `  K
)
11 cvlcvr1.j . . . . . . 7  |-  .\/  =  ( join `  K )
125, 9, 10, 11latnle 14516 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( -.  P  .<_  X  <-> 
X ( lt `  K ) ( X 
.\/  P ) ) )
133, 4, 8, 12syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <->  X ( lt `  K ) ( X  .\/  P ) ) )
1413biimpd 200 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  ->  X ( lt `  K ) ( X 
.\/  P ) ) )
15 simpl13 1035 . . . . . . . . 9  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  CvLat )
1615, 2syl 16 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  Lat )
17 simprll 740 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  z  e.  B
)
18 simpl2 962 . . . . . . . . 9  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  X  e.  B
)
19 simpl3 963 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  P  e.  A
)
2019, 7syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  P  e.  B
)
215, 11latjcl 14481 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( X  .\/  P
)  e.  B )
2216, 18, 20, 21syl3anc 1185 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  ( X  .\/  P )  e.  B )
23 simprrr 743 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  z  .<_  ( X 
.\/  P ) )
24 simprrl 742 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  X ( lt
`  K ) z )
25 simpl11 1033 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  OML )
26 simpl12 1034 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  CLat )
27 cvlatl 30125 . . . . . . . . . . . 12  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)
2815, 27syl 16 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  K  e.  AtLat )
295, 9, 10, 6atlrelat1 30121 . . . . . . . . . . 11  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  z  e.  B )  ->  ( X ( lt `  K ) z  ->  E. q  e.  A  ( -.  q  .<_  X  /\  q  .<_  z ) ) )
3025, 26, 28, 18, 17, 29syl311anc 1199 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  ( X ( lt `  K ) z  ->  E. q  e.  A  ( -.  q  .<_  X  /\  q  .<_  z ) ) )
3124, 30mpd 15 . . . . . . . . 9  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  E. q  e.  A  ( -.  q  .<_  X  /\  q  .<_  z ) )
3216adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  K  e.  Lat )
335, 6atbase 30089 . . . . . . . . . . . . . 14  |-  ( q  e.  A  ->  q  e.  B )
3433ad2antrl 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  q  e.  B )
3517adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  z  e.  B )
3622adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( X  .\/  P )  e.  B )
37 simprrr 743 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  q  .<_  z )
3823adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  z  .<_  ( X  .\/  P
) )
395, 9, 32, 34, 35, 36, 37, 38lattrd 14489 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  q  .<_  ( X  .\/  P
) )
4015adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  K  e.  CvLat )
41 simprl 734 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  q  e.  A )
42 simpll3 999 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  P  e.  A )
43 simpll2 998 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  X  e.  B )
44 simprrl 742 . . . . . . . . . . . . 13  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  -.  q  .<_  X )
455, 9, 11, 6cvlexch1 30128 . . . . . . . . . . . . 13  |-  ( ( K  e.  CvLat  /\  (
q  e.  A  /\  P  e.  A  /\  X  e.  B )  /\  -.  q  .<_  X )  ->  ( q  .<_  ( X  .\/  P )  ->  P  .<_  ( X 
.\/  q ) ) )
4640, 41, 42, 43, 44, 45syl131anc 1198 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  (
q  .<_  ( X  .\/  P )  ->  P  .<_  ( X  .\/  q ) ) )
4739, 46mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  P  .<_  ( X  .\/  q
) )
48 simprlr 741 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  -.  P  .<_  X )
4948adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  -.  P  .<_  X )
505, 9, 11, 6cvlexchb1 30130 . . . . . . . . . . . 12  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  q )  <-> 
( X  .\/  P
)  =  ( X 
.\/  q ) ) )
5140, 42, 41, 43, 49, 50syl131anc 1198 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( P  .<_  ( X  .\/  q )  <->  ( X  .\/  P )  =  ( X  .\/  q ) ) )
5247, 51mpbid 203 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( X  .\/  P )  =  ( X  .\/  q
) )
539, 10pltle 14420 . . . . . . . . . . . . . 14  |-  ( ( K  e.  OML  /\  X  e.  B  /\  z  e.  B )  ->  ( X ( lt
`  K ) z  ->  X  .<_  z ) )
5425, 18, 17, 53syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  ( X ( lt `  K ) z  ->  X  .<_  z ) )
5524, 54mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  X  .<_  z )
5655adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  X  .<_  z )
575, 9, 11latjle12 14493 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  q  e.  B  /\  z  e.  B
) )  ->  (
( X  .<_  z  /\  q  .<_  z )  <->  ( X  .\/  q )  .<_  z ) )
5832, 43, 34, 35, 57syl13anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  (
( X  .<_  z  /\  q  .<_  z )  <->  ( X  .\/  q )  .<_  z ) )
5956, 37, 58mpbi2and 889 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( X  .\/  q )  .<_  z )
6052, 59eqbrtrd 4234 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  X  e.  B  /\  P  e.  A
)  /\  ( (
z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  /\  ( q  e.  A  /\  ( -.  q  .<_  X  /\  q  .<_  z ) ) )  ->  ( X  .\/  P )  .<_  z )
6131, 60rexlimddv 2836 . . . . . . . 8  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  ( X  .\/  P )  .<_  z )
625, 9, 16, 17, 22, 23, 61latasymd 14488 . . . . . . 7  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  ( ( z  e.  B  /\  -.  P  .<_  X )  /\  ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) ) ) )  ->  z  =  ( X  .\/  P ) )
6362exp44 598 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  (
z  e.  B  -> 
( -.  P  .<_  X  ->  ( ( X ( lt `  K
) z  /\  z  .<_  ( X  .\/  P
) )  ->  z  =  ( X  .\/  P ) ) ) ) )
6463imp 420 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  z  e.  B
)  ->  ( -.  P  .<_  X  ->  (
( X ( lt
`  K ) z  /\  z  .<_  ( X 
.\/  P ) )  ->  z  =  ( X  .\/  P ) ) ) )
6564ralrimdva 2798 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  ->  A. z  e.  B  ( ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) )  ->  z  =  ( X  .\/  P ) ) ) )
6614, 65jcad 521 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  -> 
( X ( lt
`  K ) ( X  .\/  P )  /\  A. z  e.  B  ( ( X ( lt `  K
) z  /\  z  .<_  ( X  .\/  P
) )  ->  z  =  ( X  .\/  P ) ) ) ) )
673, 4, 8, 21syl3anc 1185 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X  .\/  P )  e.  B )
68 cvlcvr1.c . . . . 5  |-  C  =  (  <o  `  K )
695, 9, 10, 68cvrval2 30074 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( X  .\/  P )  e.  B )  -> 
( X C ( X  .\/  P )  <-> 
( X ( lt
`  K ) ( X  .\/  P )  /\  A. z  e.  B  ( ( X ( lt `  K
) z  /\  z  .<_  ( X  .\/  P
) )  ->  z  =  ( X  .\/  P ) ) ) ) )
703, 4, 67, 69syl3anc 1185 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X C ( X  .\/  P )  <->  ( X ( lt `  K ) ( X  .\/  P
)  /\  A. z  e.  B  ( ( X ( lt `  K ) z  /\  z  .<_  ( X  .\/  P ) )  ->  z  =  ( X  .\/  P ) ) ) ) )
7166, 70sylibrd 227 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  ->  X C ( X  .\/  P ) ) )
723adantr 453 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  K  e.  Lat )
73 simpl2 962 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  X  e.  B
)
7467adantr 453 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  ( X  .\/  P )  e.  B )
75 simpr 449 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  X C ( X  .\/  P ) )
765, 10, 68cvrlt 30070 . . . . 5  |-  ( ( ( K  e.  Lat  /\  X  e.  B  /\  ( X  .\/  P )  e.  B )  /\  X C ( X  .\/  P ) )  ->  X
( lt `  K
) ( X  .\/  P ) )
7772, 73, 74, 75, 76syl31anc 1188 . . . 4  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  /\  X C ( X 
.\/  P ) )  ->  X ( lt
`  K ) ( X  .\/  P ) )
7877ex 425 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X C ( X  .\/  P )  ->  X ( lt `  K ) ( X  .\/  P ) ) )
7978, 13sylibrd 227 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X C ( X  .\/  P )  ->  -.  P  .<_  X ) )
8071, 79impbid 185 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <->  X C
( X  .\/  P
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   ltcplt 14400   joincjn 14403   Latclat 14476   CLatccla 14538   OMLcoml 29975    <o ccvr 30062   Atomscatm 30063   AtLatcal 30064   CvLatclc 30065
This theorem is referenced by:  cvlcvrp  30140  cvr1  30209
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-lat 14477  df-clat 14539  df-oposet 29976  df-ol 29978  df-oml 29979  df-covers 30066  df-ats 30067  df-atl 30098  df-cvlat 30122
  Copyright terms: Public domain W3C validator