Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch4N Unicode version

Theorem cvlexch4N 28674
Description: An atomic covering lattice has the exchange property. Part of Definition 7.8 of [MaedaMaeda] p. 32. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvlexch3.b  |-  B  =  ( Base `  K
)
cvlexch3.l  |-  .<_  =  ( le `  K )
cvlexch3.j  |-  .\/  =  ( join `  K )
cvlexch3.m  |-  ./\  =  ( meet `  K )
cvlexch3.z  |-  .0.  =  ( 0. `  K )
cvlexch3.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlexch4N  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  .<_  ( X 
.\/  Q )  <->  ( X  .\/  P )  =  ( X  .\/  Q ) ) )

Proof of Theorem cvlexch4N
StepHypRef Expression
1 cvlatl 28666 . . . . 5  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)
21adantr 453 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  K  e.  AtLat
)
3 simpr1 966 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  P  e.  A )
4 simpr3 968 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  X  e.  B )
5 cvlexch3.b . . . . 5  |-  B  =  ( Base `  K
)
6 cvlexch3.l . . . . 5  |-  .<_  =  ( le `  K )
7 cvlexch3.m . . . . 5  |-  ./\  =  ( meet `  K )
8 cvlexch3.z . . . . 5  |-  .0.  =  ( 0. `  K )
9 cvlexch3.a . . . . 5  |-  A  =  ( Atoms `  K )
105, 6, 7, 8, 9atnle 28658 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  .0.  ) )
112, 3, 4, 10syl3anc 1187 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  .0.  ) )
12 cvlexch3.j . . . . 5  |-  .\/  =  ( join `  K )
135, 6, 12, 9cvlexchb1 28671 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  <-> 
( X  .\/  P
)  =  ( X 
.\/  Q ) ) )
14133expia 1158 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( -.  P  .<_  X  ->  ( P  .<_  ( X  .\/  Q )  <->  ( X  .\/  P )  =  ( X 
.\/  Q ) ) ) )
1511, 14sylbird 228 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )
)  ->  ( ( P  ./\  X )  =  .0.  ->  ( P  .<_  ( X  .\/  Q
)  <->  ( X  .\/  P )  =  ( X 
.\/  Q ) ) ) )
16153impia 1153 1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  .<_  ( X 
.\/  Q )  <->  ( X  .\/  P )  =  ( X  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   Basecbs 13096   lecple 13163   joincjn 14026   meetcmee 14027   0.cp0 14091   Atomscatm 28604   AtLatcal 28605   CvLatclc 28606
This theorem is referenced by:  hlexch4N  28732
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-lat 14100  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663
  Copyright terms: Public domain W3C validator