Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem4 Unicode version

Theorem cvmlift3lem4 23868
Description: Lemma for cvmlift2 23862. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
Assertion
Ref Expression
cvmlift3lem4  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
Distinct variable groups:    z, f, A    f, g, z, x   
f, J    x, g, J    f, F, g    x, z, F    f, H, g, x, z    B, f, g, x, z    f, X, g, x, z    f, G, g, x, z    C, f, g, x, z    ph, f, x    f, K, g, x, z    P, f, g, x, z    f, O, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g)    A( x, g)    J( z)

Proof of Theorem cvmlift3lem4
StepHypRef Expression
1 cvmlift3.b . . . . 5  |-  B  = 
U. C
2 cvmlift3.y . . . . 5  |-  Y  = 
U. K
3 cvmlift3.f . . . . 5  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmlift3.k . . . . 5  |-  ( ph  ->  K  e. SCon )
5 cvmlift3.l . . . . 5  |-  ( ph  ->  K  e. 𝑛Locally PCon )
6 cvmlift3.o . . . . 5  |-  ( ph  ->  O  e.  Y )
7 cvmlift3.g . . . . 5  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
8 cvmlift3.p . . . . 5  |-  ( ph  ->  P  e.  B )
9 cvmlift3.e . . . . 5  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
10 cvmlift3.h . . . . 5  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 23867 . . . 4  |-  ( ph  ->  H : Y --> B )
12 ffvelrn 5679 . . . 4  |-  ( ( H : Y --> B  /\  X  e.  Y )  ->  ( H `  X
)  e.  B )
1311, 12sylan 457 . . 3  |-  ( (
ph  /\  X  e.  Y )  ->  ( H `  X )  e.  B )
14 eleq1 2356 . . 3  |-  ( ( H `  X )  =  A  ->  (
( H `  X
)  e.  B  <->  A  e.  B ) )
1513, 14syl5ibcom 211 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  ->  A  e.  B )
)
16 eqid 2296 . . . . . . . . . . 11  |-  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )
173ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  F  e.  ( C CovMap  J ) )
18 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  f  e.  ( II  Cn  K
) )
197ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  G  e.  ( K  Cn  J
) )
20 cnco 17011 . . . . . . . . . . . 12  |-  ( ( f  e.  ( II 
Cn  K )  /\  G  e.  ( K  Cn  J ) )  -> 
( G  o.  f
)  e.  ( II 
Cn  J ) )
2118, 19, 20syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( G  o.  f )  e.  ( II  Cn  J ) )
228ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  P  e.  B )
23 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( f `  0 )  =  O )
2423fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( G `  ( f `  0
) )  =  ( G `  O ) )
25 iiuni 18401 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  = 
U. II
2625, 2cnf 16992 . . . . . . . . . . . . . 14  |-  ( f  e.  ( II  Cn  K )  ->  f : ( 0 [,] 1 ) --> Y )
2718, 26syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  f :
( 0 [,] 1
) --> Y )
28 0elunit 10770 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,] 1
)
29 fvco3 5612 . . . . . . . . . . . . 13  |-  ( ( f : ( 0 [,] 1 ) --> Y  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( G  o.  f ) `  0 )  =  ( G `  (
f `  0 )
) )
3027, 28, 29sylancl 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( G  o.  f ) `  0 )  =  ( G `  (
f `  0 )
) )
319ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( F `  P )  =  ( G `  O ) )
3224, 30, 313eqtr4rd 2339 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( F `  P )  =  ( ( G  o.  f
) `  0 )
)
331, 16, 17, 21, 22, 32cvmliftiota 23847 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) )  e.  ( II 
Cn  C )  /\  ( F  o.  ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) )  =  ( G  o.  f )  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
0 )  =  P ) )
3433simp1d 967 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  e.  ( II  Cn  C
) )
3525, 1cnf 16992 . . . . . . . . 9  |-  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )  e.  ( II  Cn  C )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
3634, 35syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
37 1elunit 10771 . . . . . . . 8  |-  1  e.  ( 0 [,] 1
)
38 ffvelrn 5679 . . . . . . . 8  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1
) )  ->  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  e.  B )
3936, 37, 38sylancl 643 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) `  1 )  e.  B )
40 eleq1 2356 . . . . . . 7  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  -> 
( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  e.  B  <->  A  e.  B ) )
4139, 40syl5ibcom 211 . . . . . 6  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  ->  A  e.  B )
)
4241expr 598 . . . . 5  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( f `  0
)  =  O  -> 
( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A  ->  A  e.  B
) ) )
4342a1dd 42 . . . 4  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( f `  0
)  =  O  -> 
( ( f ` 
1 )  =  X  ->  ( ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  ->  A  e.  B )
) ) )
44433impd 1165 . . 3  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  ->  A  e.  B ) )
4544rexlimdva 2680 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  ->  A  e.  B ) )
46 eqeq2 2305 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
( f `  1
)  =  x  <->  ( f `  1 )  =  X ) )
47463anbi2d 1257 . . . . . . . . . 10  |-  ( x  =  X  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
4847rexbidv 2577 . . . . . . . . 9  |-  ( x  =  X  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
4948riotabidv 6322 . . . . . . . 8  |-  ( x  =  X  ->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K ) ( ( f `  0 )  =  O  /\  (
f `  1 )  =  x  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  ( iota_ z  e.  B E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
50 riotaex 6324 . . . . . . . 8  |-  ( iota_ z  e.  B E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  e.  _V
5149, 10, 50fvmpt 5618 . . . . . . 7  |-  ( X  e.  Y  ->  ( H `  X )  =  ( iota_ z  e.  B E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
5251adantl 452 . . . . . 6  |-  ( (
ph  /\  X  e.  Y )  ->  ( H `  X )  =  ( iota_ z  e.  B E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
5352eqeq1d 2304 . . . . 5  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  A ) )
5453adantl 452 . . . 4  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( ( H `  X )  =  A  <-> 
( iota_ z  e.  B E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  =  A ) )
551, 2, 3, 4, 5, 6, 7, 8, 9cvmlift3lem2 23866 . . . . 5  |-  ( (
ph  /\  X  e.  Y )  ->  E! z  e.  B  E. f  e.  ( II  Cn  K ) ( ( f `  0 )  =  O  /\  (
f `  1 )  =  X  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )
56 eqeq2 2305 . . . . . . . 8  |-  ( z  =  A  ->  (
( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  z  <-> 
( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  A ) )
57563anbi3d 1258 . . . . . . 7  |-  ( z  =  A  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
5857rexbidv 2577 . . . . . 6  |-  ( z  =  A  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A ) ) )
5958riota2 6343 . . . . 5  |-  ( ( A  e.  B  /\  E! z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  <->  ( iota_ z  e.  B E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  A ) )
6055, 59sylan2 460 . . . 4  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A )  <-> 
( iota_ z  e.  B E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  =  A ) )
6154, 60bitr4d 247 . . 3  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( ( H `  X )  =  A  <->  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A ) ) )
6261expcom 424 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  ( A  e.  B  ->  ( ( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) ) )
6315, 45, 62pm5.21ndd 343 1  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557   E!wreu 2558   U.cuni 3843    e. cmpt 4093    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   iota_crio 6313   0cc0 8753   1c1 8754   [,]cicc 10675    Cn ccn 16970  𝑛Locally cnlly 17207   IIcii 18395  PConcpcon 23765  SConcscon 23766   CovMap ccvm 23801
This theorem is referenced by:  cvmlift3lem5  23869  cvmlift3lem6  23870  cvmlift3lem7  23871  cvmlift3lem9  23873
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-ec 6678  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-cn 16973  df-cnp 16974  df-cmp 17130  df-con 17154  df-lly 17208  df-nlly 17209  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-ii 18397  df-htpy 18484  df-phtpy 18485  df-phtpc 18506  df-pco 18519  df-pcon 23767  df-scon 23768  df-cvm 23802
  Copyright terms: Public domain W3C validator