Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexch Unicode version

Theorem cvrexch 29906
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 23829 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b  |-  B  =  ( Base `  K
)
cvrexch.j  |-  .\/  =  ( join `  K )
cvrexch.m  |-  ./\  =  ( meet `  K )
cvrexch.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrexch  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C Y  <->  X C
( X  .\/  Y
) ) )

Proof of Theorem cvrexch
StepHypRef Expression
1 cvrexch.b . . 3  |-  B  =  ( Base `  K
)
2 cvrexch.j . . 3  |-  .\/  =  ( join `  K )
3 cvrexch.m . . 3  |-  ./\  =  ( meet `  K )
4 cvrexch.c . . 3  |-  C  =  (  <o  `  K )
51, 2, 3, 4cvrexchlem 29905 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C Y  ->  X C ( X  .\/  Y ) ) )
6 simp1 957 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  HL )
7 hlop 29849 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
873ad2ant1 978 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
9 simp3 959 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
10 eqid 2408 . . . . . . 7  |-  ( oc
`  K )  =  ( oc `  K
)
111, 10opoccl 29681 . . . . . 6  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
128, 9, 11syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
13 simp2 958 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
141, 10opoccl 29681 . . . . . 6  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
158, 13, 14syl2anc 643 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
161, 2, 3, 4cvrexchlem 29905 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  X
)  e.  B )  ->  ( ( ( ( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  X
) ) C ( ( oc `  K
) `  X )  ->  ( ( oc `  K ) `  Y
) C ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  X
) ) ) )
176, 12, 15, 16syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  X
) ) C ( ( oc `  K
) `  X )  ->  ( ( oc `  K ) `  Y
) C ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  X
) ) ) )
18 hlol 29848 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
191, 2, 3, 10oldmj1 29708 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) ) )
2018, 19syl3an1 1217 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) ) )
21 hllat 29850 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
22213ad2ant1 978 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
231, 3latmcom 14463 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  =  ( ( ( oc `  K ) `  Y
)  ./\  ( ( oc `  K ) `  X ) ) )
2422, 15, 12, 23syl3anc 1184 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  =  ( ( ( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  X
) ) )
2520, 24eqtrd 2440 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  X
) ) )
2625breq1d 4186 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) C ( ( oc `  K ) `
 X )  <->  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  X
) ) C ( ( oc `  K
) `  X )
) )
271, 2, 3, 10oldmm1 29704 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Y ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )
2818, 27syl3an1 1217 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Y ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )
291, 2latjcom 14447 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  =  ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  X ) ) )
3022, 15, 12, 29syl3anc 1184 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  =  ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  X
) ) )
3128, 30eqtrd 2440 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Y ) )  =  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  X
) ) )
3231breq2d 4188 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  Y ) C ( ( oc `  K
) `  ( X  ./\ 
Y ) )  <->  ( ( oc `  K ) `  Y ) C ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  X ) ) ) )
3317, 26, 323imtr4d 260 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) C ( ( oc `  K ) `
 X )  -> 
( ( oc `  K ) `  Y
) C ( ( oc `  K ) `
 ( X  ./\  Y ) ) ) )
341, 2latjcl 14438 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
3521, 34syl3an1 1217 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
361, 10, 4cvrcon3b 29764 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  ( X  .\/  Y )  e.  B )  -> 
( X C ( X  .\/  Y )  <-> 
( ( oc `  K ) `  ( X  .\/  Y ) ) C ( ( oc
`  K ) `  X ) ) )
378, 13, 35, 36syl3anc 1184 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C ( X  .\/  Y )  <-> 
( ( oc `  K ) `  ( X  .\/  Y ) ) C ( ( oc
`  K ) `  X ) ) )
381, 3latmcl 14439 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
3921, 38syl3an1 1217 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
401, 10, 4cvrcon3b 29764 . . . 4  |-  ( ( K  e.  OP  /\  ( X  ./\  Y )  e.  B  /\  Y  e.  B )  ->  (
( X  ./\  Y
) C Y  <->  ( ( oc `  K ) `  Y ) C ( ( oc `  K
) `  ( X  ./\ 
Y ) ) ) )
418, 39, 9, 40syl3anc 1184 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C Y  <->  ( ( oc `  K ) `  Y ) C ( ( oc `  K
) `  ( X  ./\ 
Y ) ) ) )
4233, 37, 413imtr4d 260 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C ( X  .\/  Y )  ->  ( X  ./\  Y ) C Y ) )
435, 42impbid 184 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C Y  <->  X C
( X  .\/  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   Basecbs 13428   occoc 13496   joincjn 14360   meetcmee 14361   Latclat 14433   OPcops 29659   OLcol 29661    <o ccvr 29749   HLchlt 29837
This theorem is referenced by:  cvrat3  29928  2lplnmN  30045  2llnmj  30046  2llnm2N  30054  2lplnm2N  30107  2lplnmj  30108  lhpmcvr  30509
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838
  Copyright terms: Public domain W3C validator