Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexch Unicode version

Theorem cvrexch 29682
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 22951 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b  |-  B  =  ( Base `  K
)
cvrexch.j  |-  .\/  =  ( join `  K )
cvrexch.m  |-  ./\  =  ( meet `  K )
cvrexch.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrexch  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C Y  <->  X C
( X  .\/  Y
) ) )

Proof of Theorem cvrexch
StepHypRef Expression
1 cvrexch.b . . 3  |-  B  =  ( Base `  K
)
2 cvrexch.j . . 3  |-  .\/  =  ( join `  K )
3 cvrexch.m . . 3  |-  ./\  =  ( meet `  K )
4 cvrexch.c . . 3  |-  C  =  (  <o  `  K )
51, 2, 3, 4cvrexchlem 29681 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C Y  ->  X C ( X  .\/  Y ) ) )
6 simp1 955 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  HL )
7 hlop 29625 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
873ad2ant1 976 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
9 simp3 957 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
10 eqid 2285 . . . . . . 7  |-  ( oc
`  K )  =  ( oc `  K
)
111, 10opoccl 29457 . . . . . 6  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
128, 9, 11syl2anc 642 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
13 simp2 956 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
141, 10opoccl 29457 . . . . . 6  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
158, 13, 14syl2anc 642 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
161, 2, 3, 4cvrexchlem 29681 . . . . 5  |-  ( ( K  e.  HL  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  X
)  e.  B )  ->  ( ( ( ( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  X
) ) C ( ( oc `  K
) `  X )  ->  ( ( oc `  K ) `  Y
) C ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  X
) ) ) )
176, 12, 15, 16syl3anc 1182 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  X
) ) C ( ( oc `  K
) `  X )  ->  ( ( oc `  K ) `  Y
) C ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  X
) ) ) )
18 hlol 29624 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
191, 2, 3, 10oldmj1 29484 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) ) )
2018, 19syl3an1 1215 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) ) )
21 hllat 29626 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
22213ad2ant1 976 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
231, 3latmcom 14183 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  =  ( ( ( oc `  K ) `  Y
)  ./\  ( ( oc `  K ) `  X ) ) )
2422, 15, 12, 23syl3anc 1182 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  =  ( ( ( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  X
) ) )
2520, 24eqtrd 2317 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K ) `
 Y )  ./\  ( ( oc `  K ) `  X
) ) )
2625breq1d 4035 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) C ( ( oc `  K ) `
 X )  <->  ( (
( oc `  K
) `  Y )  ./\  ( ( oc `  K ) `  X
) ) C ( ( oc `  K
) `  X )
) )
271, 2, 3, 10oldmm1 29480 . . . . . . 7  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Y ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )
2818, 27syl3an1 1215 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Y ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) ) )
291, 2latjcom 14167 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  Y
) )  =  ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  X ) ) )
3022, 15, 12, 29syl3anc 1182 . . . . . 6  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  Y )
)  =  ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  X
) ) )
3128, 30eqtrd 2317 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X  ./\  Y ) )  =  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  X
) ) )
3231breq2d 4037 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  Y ) C ( ( oc `  K
) `  ( X  ./\ 
Y ) )  <->  ( ( oc `  K ) `  Y ) C ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  X ) ) ) )
3317, 26, 323imtr4d 259 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) C ( ( oc `  K ) `
 X )  -> 
( ( oc `  K ) `  Y
) C ( ( oc `  K ) `
 ( X  ./\  Y ) ) ) )
341, 2latjcl 14158 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
3521, 34syl3an1 1215 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
361, 10, 4cvrcon3b 29540 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  ( X  .\/  Y )  e.  B )  -> 
( X C ( X  .\/  Y )  <-> 
( ( oc `  K ) `  ( X  .\/  Y ) ) C ( ( oc
`  K ) `  X ) ) )
378, 13, 35, 36syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C ( X  .\/  Y )  <-> 
( ( oc `  K ) `  ( X  .\/  Y ) ) C ( ( oc
`  K ) `  X ) ) )
381, 3latmcl 14159 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
3921, 38syl3an1 1215 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
401, 10, 4cvrcon3b 29540 . . . 4  |-  ( ( K  e.  OP  /\  ( X  ./\  Y )  e.  B  /\  Y  e.  B )  ->  (
( X  ./\  Y
) C Y  <->  ( ( oc `  K ) `  Y ) C ( ( oc `  K
) `  ( X  ./\ 
Y ) ) ) )
418, 39, 9, 40syl3anc 1182 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C Y  <->  ( ( oc `  K ) `  Y ) C ( ( oc `  K
) `  ( X  ./\ 
Y ) ) ) )
4233, 37, 413imtr4d 259 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C ( X  .\/  Y )  ->  ( X  ./\  Y ) C Y ) )
435, 42impbid 183 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) C Y  <->  X C
( X  .\/  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1625    e. wcel 1686   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Basecbs 13150   occoc 13218   joincjn 14080   meetcmee 14081   Latclat 14153   OPcops 29435   OLcol 29437    <o ccvr 29525   HLchlt 29613
This theorem is referenced by:  cvrat3  29704  2lplnmN  29821  2llnmj  29822  2llnm2N  29830  2lplnm2N  29883  2lplnmj  29884  lhpmcvr  30285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614
  Copyright terms: Public domain W3C validator