Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn4 Unicode version

Theorem cvrnbtwn4 28373
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 22699 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b  |-  B  =  ( Base `  K
)
cvrle.l  |-  .<_  =  ( le `  K )
cvrle.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrnbtwn4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<_  Y )  <->  ( X  =  Z  \/  Z  =  Y ) ) )

Proof of Theorem cvrnbtwn4
StepHypRef Expression
1 cvrle.b . . . 4  |-  B  =  ( Base `  K
)
2 eqid 2253 . . . 4  |-  ( lt
`  K )  =  ( lt `  K
)
3 cvrle.c . . . 4  |-  C  =  (  <o  `  K )
41, 2, 3cvrnbtwn 28365 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  -.  ( X
( lt `  K
) Z  /\  Z
( lt `  K
) Y ) )
5 iman 415 . . . . 5  |-  ( ( ( X  .<_  Z  /\  Z  .<_  Y )  -> 
( X  =  Z  \/  Z  =  Y ) )  <->  -.  (
( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y ) ) )
6 cvrle.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
76, 2pltval 13938 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Z  e.  B )  ->  ( X ( lt `  K ) Z  <->  ( X  .<_  Z  /\  X  =/= 
Z ) ) )
873adant3r2 1166 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X
( lt `  K
) Z  <->  ( X  .<_  Z  /\  X  =/= 
Z ) ) )
96, 2pltval 13938 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z ( lt `  K ) Y  <->  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) )
1093com23 1162 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Z ( lt `  K ) Y  <->  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) )
11103adant3r1 1165 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Z
( lt `  K
) Y  <->  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) )
128, 11anbi12d 694 . . . . . . 7  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( lt `  K ) Z  /\  Z ( lt `  K ) Y )  <-> 
( ( X  .<_  Z  /\  X  =/=  Z
)  /\  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) ) )
13 neanior 2497 . . . . . . . . 9  |-  ( ( X  =/=  Z  /\  Z  =/=  Y )  <->  -.  ( X  =  Z  \/  Z  =  Y )
)
1413anbi2i 678 . . . . . . . 8  |-  ( ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  ( X  =/=  Z  /\  Z  =/=  Y
) )  <->  ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y
) ) )
15 an4 800 . . . . . . . 8  |-  ( ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  ( X  =/=  Z  /\  Z  =/=  Y
) )  <->  ( ( X  .<_  Z  /\  X  =/=  Z )  /\  ( Z  .<_  Y  /\  Z  =/=  Y ) ) )
1614, 15bitr3i 244 . . . . . . 7  |-  ( ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y ) )  <->  ( ( X  .<_  Z  /\  X  =/=  Z )  /\  ( Z  .<_  Y  /\  Z  =/=  Y ) ) )
1712, 16syl6rbbr 257 . . . . . 6  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( (
( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y ) )  <->  ( X
( lt `  K
) Z  /\  Z
( lt `  K
) Y ) ) )
1817notbid 287 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( -.  ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y ) )  <->  -.  ( X ( lt `  K ) Z  /\  Z ( lt `  K ) Y ) ) )
195, 18syl5rbb 251 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( -.  ( X ( lt `  K ) Z  /\  Z ( lt `  K ) Y )  <-> 
( ( X  .<_  Z  /\  Z  .<_  Y )  ->  ( X  =  Z  \/  Z  =  Y ) ) ) )
20193adant3 980 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( -.  ( X ( lt `  K ) Z  /\  Z ( lt `  K ) Y )  <-> 
( ( X  .<_  Z  /\  Z  .<_  Y )  ->  ( X  =  Z  \/  Z  =  Y ) ) ) )
214, 20mpbid 203 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<_  Y )  ->  ( X  =  Z  \/  Z  =  Y ) ) )
221, 6posref 13929 . . . . . . 7  |-  ( ( K  e.  Poset  /\  Z  e.  B )  ->  Z  .<_  Z )
23223ad2antr3 1127 . . . . . 6  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  .<_  Z )
24233adant3 980 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  Z  .<_  Z )
25 breq1 3923 . . . . 5  |-  ( X  =  Z  ->  ( X  .<_  Z  <->  Z  .<_  Z ) )
2624, 25syl5ibrcom 215 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( X  =  Z  ->  X  .<_  Z ) )
271, 6, 3cvrle 28372 . . . . . . . 8  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X  .<_  Y )
2827ex 425 . . . . . . 7  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  X  .<_  Y ) )
29283adant3r3 1167 . . . . . 6  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X C Y  ->  X  .<_  Y ) )
30293impia 1153 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  X  .<_  Y )
31 breq2 3924 . . . . 5  |-  ( Z  =  Y  ->  ( X  .<_  Z  <->  X  .<_  Y ) )
3230, 31syl5ibrcom 215 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( Z  =  Y  ->  X  .<_  Z ) )
3326, 32jaod 371 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X  =  Z  \/  Z  =  Y )  ->  X  .<_  Z ) )
34 breq1 3923 . . . . 5  |-  ( X  =  Z  ->  ( X  .<_  Y  <->  Z  .<_  Y ) )
3530, 34syl5ibcom 213 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( X  =  Z  ->  Z  .<_  Y ) )
36 breq2 3924 . . . . 5  |-  ( Z  =  Y  ->  ( Z  .<_  Z  <->  Z  .<_  Y ) )
3724, 36syl5ibcom 213 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( Z  =  Y  ->  Z  .<_  Y ) )
3835, 37jaod 371 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X  =  Z  \/  Z  =  Y )  ->  Z  .<_  Y ) )
3933, 38jcad 521 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X  =  Z  \/  Z  =  Y )  ->  ( X  .<_  Z  /\  Z  .<_  Y ) ) )
4021, 39impbid 185 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<_  Y )  <->  ( X  =  Z  \/  Z  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592   Basecbs 13022   lecple 13089   Posetcpo 13918   ltcplt 13919    <o ccvr 28356
This theorem is referenced by:  cvrcmp  28377  leatb  28386  2llnmat  28617  2lnat  28877
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fv 4608  df-poset 13924  df-plt 13936  df-covers 28360
  Copyright terms: Public domain W3C validator