Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn4 Unicode version

Theorem cvrnbtwn4 29528
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (cvnbtwn4 23303 analog.) (Contributed by NM, 18-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b  |-  B  =  ( Base `  K
)
cvrle.l  |-  .<_  =  ( le `  K )
cvrle.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrnbtwn4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<_  Y )  <->  ( X  =  Z  \/  Z  =  Y ) ) )

Proof of Theorem cvrnbtwn4
StepHypRef Expression
1 cvrle.b . . . 4  |-  B  =  ( Base `  K
)
2 eqid 2366 . . . 4  |-  ( lt
`  K )  =  ( lt `  K
)
3 cvrle.c . . . 4  |-  C  =  (  <o  `  K )
41, 2, 3cvrnbtwn 29520 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  -.  ( X
( lt `  K
) Z  /\  Z
( lt `  K
) Y ) )
5 iman 413 . . . . 5  |-  ( ( ( X  .<_  Z  /\  Z  .<_  Y )  -> 
( X  =  Z  \/  Z  =  Y ) )  <->  -.  (
( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y ) ) )
6 cvrle.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
76, 2pltval 14304 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Z  e.  B )  ->  ( X ( lt `  K ) Z  <->  ( X  .<_  Z  /\  X  =/= 
Z ) ) )
873adant3r2 1162 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X
( lt `  K
) Z  <->  ( X  .<_  Z  /\  X  =/= 
Z ) ) )
96, 2pltval 14304 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z ( lt `  K ) Y  <->  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) )
1093com23 1158 . . . . . . . . 9  |-  ( ( K  e.  Poset  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Z ( lt `  K ) Y  <->  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) )
11103adant3r1 1161 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Z
( lt `  K
) Y  <->  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) )
128, 11anbi12d 691 . . . . . . 7  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( lt `  K ) Z  /\  Z ( lt `  K ) Y )  <-> 
( ( X  .<_  Z  /\  X  =/=  Z
)  /\  ( Z  .<_  Y  /\  Z  =/= 
Y ) ) ) )
13 neanior 2614 . . . . . . . . 9  |-  ( ( X  =/=  Z  /\  Z  =/=  Y )  <->  -.  ( X  =  Z  \/  Z  =  Y )
)
1413anbi2i 675 . . . . . . . 8  |-  ( ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  ( X  =/=  Z  /\  Z  =/=  Y
) )  <->  ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y
) ) )
15 an4 797 . . . . . . . 8  |-  ( ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  ( X  =/=  Z  /\  Z  =/=  Y
) )  <->  ( ( X  .<_  Z  /\  X  =/=  Z )  /\  ( Z  .<_  Y  /\  Z  =/=  Y ) ) )
1614, 15bitr3i 242 . . . . . . 7  |-  ( ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y ) )  <->  ( ( X  .<_  Z  /\  X  =/=  Z )  /\  ( Z  .<_  Y  /\  Z  =/=  Y ) ) )
1712, 16syl6rbbr 255 . . . . . 6  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( (
( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y ) )  <->  ( X
( lt `  K
) Z  /\  Z
( lt `  K
) Y ) ) )
1817notbid 285 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( -.  ( ( X  .<_  Z  /\  Z  .<_  Y )  /\  -.  ( X  =  Z  \/  Z  =  Y ) )  <->  -.  ( X ( lt `  K ) Z  /\  Z ( lt `  K ) Y ) ) )
195, 18syl5rbb 249 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( -.  ( X ( lt `  K ) Z  /\  Z ( lt `  K ) Y )  <-> 
( ( X  .<_  Z  /\  Z  .<_  Y )  ->  ( X  =  Z  \/  Z  =  Y ) ) ) )
20193adant3 976 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( -.  ( X ( lt `  K ) Z  /\  Z ( lt `  K ) Y )  <-> 
( ( X  .<_  Z  /\  Z  .<_  Y )  ->  ( X  =  Z  \/  Z  =  Y ) ) ) )
214, 20mpbid 201 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<_  Y )  ->  ( X  =  Z  \/  Z  =  Y ) ) )
221, 6posref 14295 . . . . . . 7  |-  ( ( K  e.  Poset  /\  Z  e.  B )  ->  Z  .<_  Z )
23223ad2antr3 1123 . . . . . 6  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  .<_  Z )
24233adant3 976 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  Z  .<_  Z )
25 breq1 4128 . . . . 5  |-  ( X  =  Z  ->  ( X  .<_  Z  <->  Z  .<_  Z ) )
2624, 25syl5ibrcom 213 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( X  =  Z  ->  X  .<_  Z ) )
271, 6, 3cvrle 29527 . . . . . . . 8  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X C Y )  ->  X  .<_  Y )
2827ex 423 . . . . . . 7  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  X  .<_  Y ) )
29283adant3r3 1163 . . . . . 6  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X C Y  ->  X  .<_  Y ) )
30293impia 1149 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  X  .<_  Y )
31 breq2 4129 . . . . 5  |-  ( Z  =  Y  ->  ( X  .<_  Z  <->  X  .<_  Y ) )
3230, 31syl5ibrcom 213 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( Z  =  Y  ->  X  .<_  Z ) )
3326, 32jaod 369 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X  =  Z  \/  Z  =  Y )  ->  X  .<_  Z ) )
34 breq1 4128 . . . . 5  |-  ( X  =  Z  ->  ( X  .<_  Y  <->  Z  .<_  Y ) )
3530, 34syl5ibcom 211 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( X  =  Z  ->  Z  .<_  Y ) )
36 breq2 4129 . . . . 5  |-  ( Z  =  Y  ->  ( Z  .<_  Z  <->  Z  .<_  Y ) )
3724, 36syl5ibcom 211 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( Z  =  Y  ->  Z  .<_  Y ) )
3835, 37jaod 369 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X  =  Z  \/  Z  =  Y )  ->  Z  .<_  Y ) )
3933, 38jcad 519 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X  =  Z  \/  Z  =  Y )  ->  ( X  .<_  Z  /\  Z  .<_  Y ) ) )
4021, 39impbid 183 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X C Y )  ->  ( ( X 
.<_  Z  /\  Z  .<_  Y )  <->  ( X  =  Z  \/  Z  =  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   class class class wbr 4125   ` cfv 5358   Basecbs 13356   lecple 13423   Posetcpo 14284   ltcplt 14285    <o ccvr 29511
This theorem is referenced by:  cvrcmp  29532  leatb  29541  2llnmat  29772  2lnat  30032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-iota 5322  df-fun 5360  df-fv 5366  df-poset 14290  df-plt 14302  df-covers 29515
  Copyright terms: Public domain W3C validator