Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrp Unicode version

Theorem cvrp 28872
Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 22947 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrp.b  |-  B  =  ( Base `  K
)
cvrp.j  |-  .\/  =  ( join `  K )
cvrp.m  |-  ./\  =  ( meet `  K )
cvrp.z  |-  .0.  =  ( 0. `  K )
cvrp.c  |-  C  =  (  <o  `  K )
cvrp.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrp  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  ->  ( ( X  ./\  P )  =  .0.  <->  X C
( X  .\/  P
) ) )

Proof of Theorem cvrp
StepHypRef Expression
1 hlomcmcv 28813 . 2  |-  ( K  e.  HL  ->  ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
) )
2 cvrp.b . . 3  |-  B  =  ( Base `  K
)
3 cvrp.j . . 3  |-  .\/  =  ( join `  K )
4 cvrp.m . . 3  |-  ./\  =  ( meet `  K )
5 cvrp.z . . 3  |-  .0.  =  ( 0. `  K )
6 cvrp.c . . 3  |-  C  =  (  <o  `  K )
7 cvrp.a . . 3  |-  A  =  ( Atoms `  K )
82, 3, 4, 5, 6, 7cvlcvrp 28797 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  (
( X  ./\  P
)  =  .0.  <->  X C
( X  .\/  P
) ) )
91, 8syl3an1 1220 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  ->  ( ( X  ./\  P )  =  .0.  <->  X C
( X  .\/  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ w3a 939    = wceq 1628    e. wcel 1688   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   Basecbs 13142   joincjn 14072   meetcmee 14073   0.cp0 14137   CLatccla 14207   OMLcoml 28632    <o ccvr 28719   Atomscatm 28720   CvLatclc 28722   HLchlt 28807
This theorem is referenced by:  atcvrj1  28887
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808
  Copyright terms: Public domain W3C validator